Дроби. Вычитание десятичных дробей. Вычитание десятичных дробей, правила, примеры, решения

Содержание

Вычитание десятичных дробей с обыкновенными дробями. Вычитание десятичных дробей, правила, примеры, решения

Дроби. Вычитание десятичных дробей. Вычитание десятичных дробей, правила, примеры, решения

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине “Интеграл” для 5 класса
Тренажер к учебнику Истоминой Н.Б.   Тренажер к учебнику Н.Я. Виленкина

Способы вычитания десятичных дробей

Вычитать десятичные дроби можно двумя способами.

Первый способ аналогичен вычитанию натуральных чисел столбиком. Давайте рассмотрим этот способ на примере. Даны десятичные дроби: 45,68 и 4,1, определим: чему равна их разность?Сначала уравняем количество знаков после запятой.

Для этого справа к десятичной дроби 4,1 припишем ноль и получим 4,10. Значение десятичной дроби при этом не меняется, т.к. десятичную разделительную запятую мы не переносили.

Далее расположим десятичные дроби друг под другом и, начиная с самого крайнего правого столбца, будем вычитать цифры нижнего ряда из цифр верхнего ряда. В конце не забываем поставить запятую.В результате этих операций мы получим разность десятичных дробей.

Все просто и понятно.

Единственное затруднение может возникнуть, если при вычитании разряд числа уменьшаемого меньше разряда числа вычитаемого.

Рассмотрим еще один пример вычитания десятичных дробей. Даны десятичные дроби: 23,18 и 3,2. Сначала выравняем количество разрядов и получим: 23,18 и 3,20.
Запишем десятичные дроби в столбик друг под другом/

Начиная с правого крайнего ряда, вычитаем цифры нижнего ряда из цифр верхнего ряда. Если из цифры 1 вычесть цифру 2, то получим отрицательное число. Поэтому мы берем десяток единиц из соседнего разряда и получается, что производим вычитание числа 2 из числа 11.

В результате имеем:
Алгоритм вычитания десятичных дробей:1. Выравниваем десятичные дроби по количеству цифр после запятой.2. Записываем десятичные дроби в столбик друг под другом.3. Производим вычитание десятичных дробей по правилам вычитания натуральных чисел, не обращая внимания на наличие десятичной запятой.

4.

После окончания вычитания, не забываем поставить десятичную запятую.

Второй способ вычитания десятичных дробей

Этот способ более сложен, менее нагляден и требует небольшого опыта. Зато он более быстр, поскольку здесь нет необходимости записывать числа в столбик и уравнивать количество знаков после запятой.

Самое главное в этом методе запомнить правило: десятые доли числа можно вычитать только из десятых долей, сотые – из сотых и т. д. Если в каком-либо разряде уменьшаемое меньше вычитаемого, то десяток единиц берем из соседнего слева разряда.

Рассмотрим пример.

Заданы десятичные дроби: 5,13 и 3,4.Вычитаем сотые доли, получаем 3.

Вычитаем десятые доли. В данном пример нам необходимо взять десять единиц из соседнего разряда, т.к. при вычитании десятых долей, уменьшаемое меньше вычитаемого.

5,13 – 3,4 = 1,73

И как обычно, результаты вычитания нужно проверить сложением. Для нашего примера, это:

  • Для начала нужно уравнять число знаков после запятой.
  • Дальше необходимо записать десятичные дроби друг под другом таким образом, чтобы запятые были друг под другом. Это самая важная часть!
  • Далее, выполнить вычитание десятичных дробей, без учета запятых, по правилам вычитания в столбик натуральных чисел.
  • И последнее, поставить в ответе запятую под запятыми.

Второй вариант вычитания десятичных дробей:

Если вы хорошо разбираетесь в десятичных дробях, в том, что такое десятые, сотые и др., то вам будетинтересен этот вариант.

Правила вычитания десятичных дробей в строчку:

  • Вычитаем десятичные дроби справа налево. Т.е., начиная с крайнего правого числа после запятой.
  • Вычитаем поразрядно. Целые из целых, десятые из десятых, сотые из сотых, тысячные из тысячных и так далее.
  • При вычитании большей цифры из меньшей, у соседа слева меньшей цифры занимаем десяток.

Например:

Крайняя правая цифра в заданных дробях – сотого разряда. 1 – 1 = 0. Получаем ноль, то есть, в разрядесотых разности записываем0.

Десятые вычитаем из десятых. 2 – в уменьшаемом, 3 – вычитаемом. Т.к. из 2 (меньшего) нельзя вычитать3 (большее), то нужно занять десяток у левой цифры для2. Здесь это 5.2 + 10 = 12.Таким образом,3вычитаем не из2, а из12.

12 – 3 = 9

Записываем 9 в разность. Так как мы из 5 вычли 1 десяток, в уменьшаемом остается не 15, а 14, чтобы этоне забыть ставим над5 пустой кружок или точку, как удобнее.

Вычитаем из 14 8:

14 – 8 = 6

Обратите внимание! Десятые можно вычитать только из десятых, сотые из сотых, тысячные из тысячных итак далее. Если в одной из дробей, отсутствует цифра соответствующего разряда, вместо неёзаписываем0.

Во втором числе крайняя правая цифра это два (сотый разряд), а в первом числе сотых не видно.Значит, к первому числу справа от9 дописываем0 и далее производим вычитание опираясь наосновные правила.

Третий вариант вычитания десятичных дробей:

В этой статье внимание сосредоточим на вычитании десятичных дробей.

Здесь мы рассмотрим правила вычитания конечных десятичных дробей, остановимся на вычитании десятичных дробей столбиком, а также рассмотрим, как проводится вычитание бесконечных периодических и непериодических десятичных дробей.

Наконец, поговорим о вычитании десятичных дробей из натуральных чисел, обыкновенных дробей и смешанных чисел, и о вычитании натуральных чисел, обыкновенных дробей и смешанных чисел из десятичных дробей.

Сразу скажем, что здесь мы будем рассматривать лишь вычитание меньшей десятичной дроби из большей десятичной дроби, другие случаи разберем в статьях вычитание рациональных чисел и вычитание действительных чисел.

Навигация по странице.

Общие принципы вычитания десятичных дробей

По своей сути вычитание конечных десятичных дробей и бесконечных периодических десятичных дробей представляет вычитание соответствующих обыкновенных дробей. Действительно, указанные десятичные дроби являются десятичной записью обыкновенных дробей, о чем сказано в статье перевод обыкновенных дробей в десятичные дроби и обратно .

Рассмотрим примеры вычитания десятичных дробей, отталкиваясь от озвученного принципа.

Пример.

Выполните вычитание из десятичной дроби 3,7 десятичной дроби 0,31.

Решение.

Так как 3,7=37/10 и 0,31=31/100, то . Так вычитание десятичных дробей свелось к вычитанию обыкновенных дробей с разными знаменателями : . Полученную дробь представим в виде десятичной дроби: 339/100=3,39.

Ответ:

3,7−0,31=3,39.

Заметим, что вычитание конечных десятичных дробей удобно проводить столбиком, об этом методе мы поговорим в .

Сейчас разберем пример вычитания периодических десятичных дробей.

Пример.

Отнимите от периодической десятичной дроби 0,(4) периодическую десятичную дробь 0,41(6).

Решение.

Ответ:

0,(4)−0,41(6)=0,02(7).

Осталось озвучить принцип вычитания бесконечных непериодических дробей.

Вычитание бесконечных непериодических дробей сводится к вычитанию конечных десятичных дробей. Для этого вычитаемые бесконечные десятичные дроби округляют до некоторого разряда, обычно, до самого младшего из возможных (смотрите округление чисел).

Пример.

Проведите вычитание конечной десятичной дроби 0,52 из бесконечной непериодической десятичной дроби 2,77369….

Решение.

Округлим бесконечную непериодическую десятичную дробь до 4 знака после запятой, имеем 2,77369…≈2,7737. Таким образом, 2,77369…−0,52≈2,7737−0,52. Вычислив разность конечных десятичных дробей, получаем 2,2537.

Ответ:

2,77369…−0,52≈2,2537.

Вычитание десятичных дробей столбиком

Очень удобным способом вычитания конечных десятичных дробей является вычитание столбиком. Вычитание десятичных дробей столбиком очень схоже с вычитанием столбиком натуральных чисел .

Чтобы выполнить вычитание десятичных дробей столбиком, нужно:

  • уравнять количество десятичных знаков в записях десятичных дробей (если оно, конечно, отличается), дописав справа некоторое количество нулей к одной из дробей;
  • вычитаемое записать под уменьшаемым так, чтобы цифры соответствующих разрядов находились друг под другом, и запятая находилась под запятой;
  • выполнить вычитание столбиком, не обращая внимания на запятые;
  • в полученной разности поставить запятую так, чтобы она располагалась под запятыми уменьшаемого и вычитаемого.

Рассмотрим пример вычитания десятичных дробей столбиком.

Пример.

Выполните вычитание десятичной дроби 10,30501 из десятичной дроби 4 452,294.

Решение.

Очевидно, количество десятичных знаков дробей различно. Уравняем его, дописав два нуля справа в записи дроби 4 452,294, при этом получится равная ей десятичная дробь 4 452,29400.

Теперь запишем вычитаемое под уменьшаемым, как это предполагает метод вычитания десятичных дробей столбиком:

Проводим вычитание, не обращая внимания на запятые:

Осталось лишь поставить десятичную запятую в полученной разности:

На этом этапе запись приняла законченный вид, и вычитание десятичных дробей столбиком закончено. Получился следующий результат .

Ответ:

4 452,294−10,30501=4 441,98899.

Вычитание десятичной дроби из натурального числа и наоборот

Вычитание конечной десятичной дроби из натурального числа удобнее всего выполнить столбиком, записав уменьшаемое натуральное число в виде десятичной дроби с нулями в дробной части. Разберемся с этим при решении примера.

Пример.

Отнимите от натурального числа 15 десятичную дробь 7,32.

Решение.

Представим натуральное число 15 в виде десятичной дроби, дописав после десятичной запятой две цифры 0 (так как вычитаемая десятичная дробь имеет две цифры в дробной части), имеем 15,00.

Теперь выполним вычитание десятичных дробей столбиком:

В итоге получаем 15−7,32=7,68.

Ответ:

15−7,32=7,68.

Вычитание бесконечной периодической десятичной дроби из натурального числа можно свести к вычитанию обыкновенной дроби из натурального числа. Для этого периодическую десятичную дробь достаточно заменить соответствующей обыкновенной дробью.

Пример.

Проведите вычитание из натурального числа 1 периодической десятичной дроби 0,(6).

Решение.

Периодической десятичной дроби 0,(6) отвечает обыкновенная дробь 2/3. Таким образом, 1−0,(6)=1−2/3=1/3. Полученную обыкновенную дробь можно записать в виде десятичной дроби 0,(3).

Ответ:

1−0,(6)=0,(3).

Вычитание бесконечной непериодической десятичной дроби из натурального числа сводится к вычитанию конечной десятичной дроби. Для этого бесконечную непериодическую десятичную дробь нужно округлить до некоторого разряда.

Пример.

Отнимите от натурального числа 5 бесконечную непериодическую десятичную дробь 4,274….

Решение.

Сначала округлим бесконечную десятичную дробь, мы можем провести округление до сотых, имеем 4,274…≈4,27. Тогда 5−4,274…≈5−4,27.

Представим натуральное число 5 как 5,00, и выполним вычитание десятичных дробей столбиком:

Ответ:

5−4,274…≈0,73.

Осталось озвучить правило вычитания натурального числа из десятичной дроби: чтобы вычесть натуральное число из десятичной дроби, надо это натуральное число вычесть из целой части уменьшаемой десятичной дроби, а дробную часть оставить без изменения. Это правило относится как к конечным десятичным дробям, так и к бесконечным. Рассмотрим решение примера.

Пример.

Выполните вычитание натурального числа 17 из десятичной дроби 37,505.

Решение.

Целая часть десятичной дроби 37,505 равна 37. Вычтем из нее натуральное число 17, имеем 37−17=20. Тогда 37,505−17=20,505.

Ответ:

37,505−17=20,505.

Вычитание десятичной дроби из обыкновенной дроби или смешанного числа и наоборот

Вычитание конечной десятичной дроби или бесконечной периодической десятичной дроби из обыкновенной дроби можно свести к вычитанию обыкновенных дробей. Для этого вычитаемую десятичную дробь достаточно перевести в обыкновенную дробь.

Пример.

Отнимите десятичную дробь 0,25 от обыкновенной дроби 4/5.

Решение.

Так как 0,25=25/100=1/4, то разность обыкновенной дроби 4/5 и десятичной дроби 0,25 равна разности обыкновенных дробей 4/5 и 1/4. Итак, 4/5−0,25=4/5−1/4=16/20−5/20=11/20. В десятичной записи полученная обыкновенная дробь имеет вид 0,55.

Ответ:

Источник: https://testet.ru/semya/vychitanie-desyatichnyh-drobei-s-obyknovennymi-drobyami-vychitanie-desyatichnyh.html

Вычитание десятичных дробей: правила, примеры, решения. Действия с десятичными дробями

Дроби. Вычитание десятичных дробей. Вычитание десятичных дробей, правила, примеры, решения

В этой статье внимание сосредоточим на вычитании десятичных дробей.

Здесь мы рассмотрим правила вычитания конечных десятичных дробей, остановимся на вычитании десятичных дробей столбиком, а также рассмотрим, как проводится вычитание бесконечных периодических и непериодических десятичных дробей.

Наконец, поговорим о вычитании десятичных дробей из натуральных чисел, обыкновенных дробей и смешанных чисел, и о вычитании натуральных чисел, обыкновенных дробей и смешанных чисел из десятичных дробей.

Сразу скажем, что здесь мы будем рассматривать лишь вычитание меньшей десятичной дроби из большей десятичной дроби, другие случаи разберем в статьях вычитание рациональных чисел и вычитание действительных чисел.

Навигация по странице.

Вычитание десятичных дробей: правила, примеры, решения, как вычесть из десятичной дроби обыкновенную дробь

Дроби. Вычитание десятичных дробей. Вычитание десятичных дробей, правила, примеры, решения

Изучаем другие действия, которые можно совершать с десятичными дробями. В этом материале мы узнаем, как правильно подсчитать разность десятичных дробей.

Отдельно разберем правила для конечных и бесконечных дробей (как периодических, так и непериодических), а также посмотрим, как считать разность дробей столбиком.

Во второй части мы объясним, как вычесть десятичную дробь из натурального числа, обыкновенной дроби, смешанного числа.

Отметим заранее, что в этой статье рассмотрены только случаи, когда меньшая дробь вычитается из большей, т.е. результат этого действия положителен; другие случаи относятся к нахождению разности рациональных и действительных чисел и должны быть объяснены отдельно.

Основные правила вычитания десятичных дробей

Процесс вычисления как конечных, так и бесконечных периодических десятичных дробей можно свести к нахождению разности дробей обыкновенных. Раньше мы говорили о том, что десятичные дроби можно записывать в виде обыкновенных дробей. Исходя из этого правила, разберем несколько примеров нахождения разности.

Пример 1

Найдите разность 3,7-0,31.

Решение 

Переписываем десятичные дроби в виде обыкновенных: 3,7=3710 и 0,31=31100.

Что делать потом, мы уже изучали. Мы получили ответ, который переводим обратно в десятичную дробь: 339100=3,39.

Подсчеты, связанные с десятичными дробями, удобно производить столбиком. Как же пользоваться этим методом? Покажем, решив задачу.

Пример 2

Вычислите разность между периодической дробью 0, (4) и периодической десятичной дробью 0,41(6).

Решение

 Переведем записи периодических дробей в обыкновенные и подсчитаем.

0,4(4)=0,4+0,004+…=0,41-0,1=0,40,9=49.0,41(6)=0,41+(0,006+0,0006+…)=41100+0,0060,9==41100+6900=41100+1150=123300+2300=125300=512

Итого: 0,(4)-0,41(6)=49-512=1636-1536=136  

Если нужно, ответ мы можем представить в виде десятичной дроби:

Ответ: 0,(4) −0,41(6) =0,02(7). 

Разберем далее, как найти разность, если у нас в условиях стоят бесконечные непериодические дроби. Такой случай также можно свести к нахождению разности конечных десятичных дробей, для чего понадобится округлить бесконечные дроби до определенного разряда (обычно самого меньшего из возможных).

Пример 3

Найдите разность 2, 77369…-0,52.

Решение

Вторая дробь в условии – конечная, а первая – бесконечная непериодическая. Мы можем округлить ее до четырех знаков после запятой: 2,77369…≈2,7737. После этого можно выполнять вычитание: 2,77369…−0,52≈2,7737−0,52.

Ответ: 2,2537. 

Как считать разность десятичных дробей столбиком

Вычитание столбиком – быстрый и наглядный способ узнать разность конечных десятичных дробей. Процесс подсчета очень схож с аналогичным для натуральных чисел.

Определение 1

Чтобы подсчитать разность десятичных дробей столбиком, необходимо:

  1. если в указанных десятичных дробях отличается количество знаков после запятой, уравняем его. Для этого допишем к нужной дроби нули;
  2. запишем вычитаемую дробь под уменьшаемой, разместив значения разрядов строго друг под другом, а запятую под запятой;
  3. выполним подсчет столбиком так же, как мы это делаем для натуральных чисел, запятую при этом игнорируем;
  4. в ответе отделим нужное количество чисел запятой так, чтобы она располагалась на том же месте. 

Разберем конкретный пример использования этого метода на практике.

Пример 4

Найдите разность 4 452,294-10,30501.

Решение 

Для начала выполним первый шаг – уравняем количество десятичных знаков. Допишем два нуля в первую дробь и получим дробь вида 4 452,29400, значение которой идентично исходной.

Запишем получившиеся числа друг под другом в нужном порядке, чтобы получился столбик:

Считаем как обычно, игнорируя запятые:

В получившемся ответе поставим запятую в нужном месте:

Подсчеты окончены.

Наш результат : 4 452,294−10,30501=4 441,98899.

Как вычесть натуральное число из десятичной дроби и наоборот

Найти разность между конечной десятичной дробью и натуральным числом легче всего описанным выше способом – столбиком. Для этого число, из которого мы вычитаем, необходимо записать в виде десятичной дроби, в дробной части которой стоят нули.

Пример 5

Вычислите 15-7,32.

Запишем уменьшаемое число 15 в виде дроби 15,00, поскольку дробь, которую нам нужно вычесть, имеет два знака после запятой. Далее выполняем подсчет столбиком, как обычно:

Таким образом, 15−7,32=7,68.

Если из натурального числа нам нужно вычесть бесконечную периодическую дробь, то мы опять же сводим эту задачу к аналогичному вычислению. Заменяем периодическую десятичную дробь на обыкновенную.

Пример 6

Вычислите разность 1-0, (6).

Решение

Указанной в условии периодической десятичной дроби соответствует обычная 23.

Считаем: 1−0,(6)=1−23=13.

Полученный ответ можно перевести в периодическую дробь 0,(3).

Если данная в условии дробь непериодическая, поступаем так же, предварительно округлив ее до нужного разряда.

Пример 7

Отнимите 4,274… от 5.

Решение 

Указанную бесконечную дробь мы округлим до сотых и получим 4,274…≈4,27.

После этого вычисляем 5−4,274…≈5−4,27.

Преобразуем 5 в 5,00 и запишем столбик:

В итоге 5−4,274…≈0,73. 

Если перед нами стоит обратная задача – вычесть натуральное число из десятичной дроби, то мы выполняем вычитание из целой части дроби, а дробную часть не трогаем совсем. Мы поступаем так и с конечными, и с бесконечными дробями.

Пример 8

Найдите разность 37,505 – 17.

Решение

Отделяем от дроби целую часть 37 и вычитаем требуемое число из нее. Получаем 37,505−17=20,505.  

Как вычесть десятичную дробь из смешанного числа или обыкновенной дроби и наоборот

Эту задачу также необходимо свести к вычитанию обыкновенных дробей – как в случае со смешанными числами, так и с десятичными дробями.

Пример 9

Вычислите разность 0,25-45.

Решение

Представим 0,25 в виде обыкновенной дроби – 0,25=25100=14.

Теперь нам нужно найти разность между 14и 45.

Считаем: 45−0,25=45−14=1620−520=1120.

Запишем ответ в виде десятичной записи: 0,55. 

Если в условии стоит смешанное число, из которого надо вычесть конечную или периодическую десятичную дробь, то поступаем аналогично.

Пример 10

Условие: отнимите 0,(18) от 8411.

Решение

Перепишем периодическую дробь в виде обыкновенной. 0,(18)=0,18+0,0018+0,000018+…=0,181-0,01=0,180,99=1899=211

Получается, что 8411-0,(18)=8411-211=8211.

В виде десятичной дроби ответ можно записать как 8,(18). 

Таким же образом мы действуем, когда вычитаем смешанное число или обыкновенную дробь из конечной или периодической дроби.

Пример 11

Подсчитайте 940-0,03.

Решение 

Заменяем дробь 0,03 на обыкновенную 3100.

У нас получается, что: 940−0,03=940−3100=90400−12400=78400=39200

Ответ можно оставить так или преобразовать в десятичную дробь 0,195. 

Если нам требуется выполнять вычитание с участием бесконечных непериодических дробей, то нам нужно будет свести их к конечным. Со смешанными числами поступаем аналогично. Для этого запишем обыкновенную дробь или смешанное число в виде десятичной дроби и округлим вычитаемую дробь до определенного разряда. Проиллюстрируем нашу мысль примером:

Пример 12

Отнимите 4,38475603…. из 1027.

Решение

Преобразуем смешанное число в неправильную дробь.

1027=10·7+27=727

Далее эту дробь запишем в десятичном виде и получим 10, (285714).

В итоге 1027-4,38475603…=10,(285714)-4,38475603…. 

Теперь округлим вычитаемые числа до седьмого знака: 10, (285714) =10,285714285714…≈10,2857143 и  4,38475603…≈4,3847560 

Тогда 10, (285714) −4,38475603…≈10,2857143−4,3847560.

Единственное, что осталось сделать – вычесть одну конечную десятичную дробь из другой. Выполним подсчет столбиком:

Ответ: 1027-4,38475603…≈5,9009583 

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Источник: https://Zaochnik.com/spravochnik/matematika/dejstvitelnye-ratsionalnye-irratsionalnye-chisla/vychitanie-desjatichnyh-drobej/

Вычитание десятичных дробей, правила, примеры, решения

Дроби. Вычитание десятичных дробей. Вычитание десятичных дробей, правила, примеры, решения

Как и сложение, вычитание десятичных дробей зависит от правильной записи чисел.

Правило вычитания десятичных дробей

1) ЗАПЯТАЯ ПОД ЗАПЯТОЙ!

Эта часть правила самая важная. При вычитании десятичных дробей их следует записать так, чтобы запятые уменьшаемого и вычитаемого находились строго одна под другой.

2) Уравниваем количество цифр после запятой. Для этого в том числе, где количество цифр после запятой меньше, дописываем после запятой в конце нули.

3) Вычитаем числа, не обращая внимания на запятую.

4) Сносим запятую под запятыми.

https://www.youtube.com/watch?v=XWr_6ABg-6o

Примеры на вычитание десятичных дробей.

Чтобы найти разность десятичных дробей 9,7 и 3,5, запишем их так, чтобы запятые в обоих числах находились строго одна под другой. Затем вычитаем, не обращая внимания на запятую. В полученном результате запятую сносим, то есть записываем под запятыми уменьшаемого и вычитаемого:

2) 23,45 — 1,5

Чтобы из одной десятичной дроби вычесть другую, надо записать их так, чтобы запятые располагались точно одна под другой. Так как у 23,45 после запятой две цифры, а у 1,5 — только одна, дописываем в 1,5 нуль. После этого ведем вычитания, не обращая внимания на запятую. В результат сносим запятую под запятыми:

23,45 — 1,5=21,95.

Вычитание десятичных дробей начинаем с их записи так, чтобы запятые были расположены ровно одна под одной. В первом числе после запятой одна цифра, во втором — три, поэтому на место недостающих двух цифр в первом числе записываем нули. Затем вычитаем числа, не обращая внимания на запятую. В полученном результате сносим запятую под запятыми:

63,5-8,921=54,579.

4) 2,8703 — 0,507

Чтобы вычесть эти десятичные дроби, записываем их так, чтобы запятая второго числа расположилась точно под запятой первого. В первом числе после запятой четыре цифры, во втором — три, поэтому второе число дополняем после запятой нулем в конце. После этого вычитаем эти числа, как обычные натуральные, не учитывая запятую. В полученном результате записываем запятую под запятыми:

2,8703 — 0,507 = 2,3663.

5) 35,46 — 7,372

Вычитание десятичных дробей начинаем с записи чисел таким образом, чтобы запятые находились одна под другой. Дополняем нулем после запятой первое число, чтобы в обоих дробях после запятой было по три цифры. Затем вычитаем, не обращая внимания на запятую. В ответе сносим запятую под запятыми:

35,46 — 7,372 = 28,088.

Чтобы из натурального числа вычесть десятичную дробь, в его записи в конце ставим запятую и приписываем необходимое количество нулей после запятой. Зачем вычитаем, не беря во внимание запятую. В ответ сносим запятую ровно под запятыми:

45 — 7,303 = 37,698.

7) 17,256 — 4,756

Этот пример на вычитание десятичных дробей выполняем аналогично. В результате получили число с нулями после запятой в конце. Их в ответе не пишем: 17,256 — 4,756 =12,5.

Дробью будем называть одну или несколько равных между собой долей одного целого. Дробь записывается с помощью двух натуральных чисел, которые разделены между собой чертой. Например, 1 / 2 , 14 / 4 , ¾, 5 / 9 и т.д.

Цифра, которая записана сверху над чертой, называется числителем дроби, а цифра записанная под чертой, называется знаменателем дроби.

Для чисел, у которых знаменатель равен 10, 100, 1000, и т.д. условились записывать число без знаменателя. Для этого сначала пишут целую часть числа, ставят запятую и пишут дробную часть этого числа, то есть числитель дробной части.

Например, вместо 6(7 / 10) пишут 6,7. Такую запись принято называть десятичной дробью .

Разберемся, как выполнять простейшие арифметические действия с десятичными дробями.

Сложение десятичных дробей в смешанной форме

Допустим нам нужно сложить десятичные дроби 2,7 и 1,651.

Первым делом необходимо уравнять количество цифр после запятой. Для этого нужно приписать к десятичной дроби 2,7 справа два нуля, получим: 2,7 = 2,700.

  • 2,700 = 2 * (700 / 1000);
  • 1,651 = 1 * (651 / 1000).

Для сложения воспользуемся правилом, целые части складываем отдельно, дробные отдельно, и результаты складываем между собой.

  • 2 + 1 = 3;
  • 700 / 1000 + 651 / 1000 = 1351 / 1000 = 1 * (351 / 1000);
  • 3 + 1 * (351 / 1000) = 4 * (351 / 1000).

А теперь, записываем это число в десятичной форме, имеем: 4,351.

Получаем в итоге, 2,7 + 1,651.= 4,351.

Сложение десятичных дробей в столбик

Еще одним способом сложения десятичных дробей, является сложение чисел в столбик.

Снова, уравниваем количество цифр после запятой, приписывая нули. Записываем одно число над другим и складываем.

3,700+2,651_____

6,351

Со сложением разобрались, теперь найдем разность тех же чисел.

Вычитание десятичных дробей в смешанной форме

Опять, же повторяем первый пункт и уравниваем количество цифр после запятой, дописывая нули.

Запишем эти числа в смешанной форме.

  • 2,700 = 2 * (700 / 1000);
  • 1,651 = 1 * (651 / 1000).

Для нахождения разности воспользуемся правилом, работаем отдельно с целыми и с дробными частями, а потом складываем полученные результаты.

  • 2 – 1 = 1;
  • 700 / 1000 – 651 / 1000 = 49 / 1000 = 49 / 1000 ;
  • 1 + 49 / 1000 = 1 * (49 / 1000).

А теперь, записываем это число в десятичной форме, имеем: 1,049.

Получаем в итоге, 2,7 – 1,651.= 1,049.

Вычитание десятичных дробей в столбик

Такой же результат моно было бы получить и при вычитании столбиком.

3,700-2,651_____

1,049

Общее правило сложения и вычитания десятичных дробей

1. Уравнять в дробях количество знаков после запятой

Такие арифметические вычислительные действия, как сложение и вычитание десятичных дробей, необходимы для того, чтобы, оперируя дробными числами получать искомый результат.

Особая важность проведения этих операций состоит в том, что во многих сферах деятельности человека меры многих сущностей представлены именно десятичными дробями.

Поэтому для осуществления определенных действий со многими предметами материального мира требуется складывать или вычитать именно десятичные дроби. Следует заметить, что на практике эти операции используются практически повсеместно.

Процедуры сложения и вычитания десятичных дробей по своей математической сути осуществляется практически точно так же, как аналогичные операции для целых чисел. При ее осуществлении значение каждого разряда одного числа нужно записывать под значением аналогичного разряда другого числа.

Подчиняется следующим правилам:

Сначала необходимо произвести уравнивание количество тех знаков, что располагаются после запятой;

Затем нужно произвести запись десятичных дробей друг под другом таким образом, чтобы содержащиеся в них запятые располагались строго друг под другом;

Осуществить процедуру вычитания десятичных дробей в полном соответствии с теми правилами, которые действуют для вычитания целых чисел. При этом не нужно обращать никакого внимания на запятые;

После получения ответа запятую в нем нужно поставить строго под теми, которые имеются в исходных числах.

Операция сложения десятичных дробей осуществляется в соответствии с теми же правилами и алгоритмом, которые описаны выше для процедуры вычитания.

Пример сложения десятичных дробей

Две целых две десятых плюс одна сотая плюс четырнадцать целых девяносто пять сотых равняется семнадцать целых шестнадцать сотых.

2,2 + 0,01 + 14,95 = 17,16

Примеры сложения и вычитания десятичных дробей

Математические операции сложения и вычитания десятичных дробей на практике используются чрезвычайно широко, причем они нередко касаются многих предметов окружающего нас материального мира. Ниже приводится несколько примеров таких вычислений.

Пример 1

Согласно проектно-сметной документации, для строительства небольшого производственного объекта требуется десять целых пять десятых кубометров бетона.

Используя современные технологии возведения зданий, подрядчикам без ущерба для качественных характеристик сооружения удалось использовать для проведения всех работ всего девять целых девять десятых кубометров бетона. Размер экономии составляет:

Десять целых пять десятых минус девять целых девять десятых равно ноль целых шесть десятых кубометра бетона.

10,5 – 9,9 = 0,6 м 3

Пример 2

Двигатель, устанавливаемый на старую модель автомобиля, потребляет в городском цикле восемь целых две десятых литра топлива на сто километров пробега. Для нового силового агрегата этот показатель составляет семь целых пять десятых литров. Размер экономии составляет:

Восемь целых две десятых литра минус семь целых пять десятых литра равно ноль целых семь десятых литра на сто километров пробега в городском режиме движения.

8,2 – 7,5 = 0,7л

Операции сложения и вычитания десятичных дробей применяются чрезвычайно широко, и их осуществление не составляет никаких проблем. В современной математике эти процедуры отработаны практически идеально, и ими практически все хорошо владеют еще со школьной скамьи.

Цели урока:

  • формирование знаний о правилах сложения и вычитания десятичных дробей и умения применять их в простейших случаях;
  • развитие умений сравнивать, выявлять закономерности, обобщать;
  • воспитание самостоятельности при выполнении заданий.

Оборудование: компьютер, проектор,магнитные доски для учащихся, индивидуальныеразноуровневые карточки.

Структура урока:

1. Организационный момент.2. Активизация ранее полученных знаний.3. Изучение нового материала.4. Первичное закрепление изученного материала.5. Тест.6. Постановка домашнего задания.

7. Подведение итогов урока.

ХОД УРОКА

I. Организационный момент

Проверяется готовность класса к уроку.Отмечается, что учащиеся недавно познакомились спонятием «десятичная дробь», научились читать и сравнивать десятичные дроби. На уроке будетрассмотрен вопрос о том, как складывать ивычитать десятичные дроби. Записывается темаурока. Слайд 1.

II. Активизация ранее полученных знаний

Коль скоро речь сегодня пойдет о десятичныхдробях, давайте вспомним:

  • Какие из этих дробей можно записать в виде десятичных:

Слайд 2.(Учащиеся называют дроби).

    Представьте дроби в виде десятичных. (Учащиеся показывают на магнитных досках). Еще раз вспомним, какие дроби можно записать в виде десятичных. (Ученики дают ответ).Представьте в виде десятичных дробей:

Слайд 3.(На магнитных досках учащиеся показывают записи).

0,62;7,321; 21,0001; 63,01246. Слайд4.

III. Изучение нового материала

Ребята, а какой из приведенныхпримеров касается сегодняшней темы. (Учащиесяотвечают, что последний).
– Давайте запишем этот пример в тетрадь инайдем сумму.

Давайте запишем этот пример в виде десятичныхдробей.

Тот же самый результат мы получим, складываячисла в столбик.

– Что мы с вами получили? (Сумму десятичныхдробей).
– Давайте проговорим, как мы это сделали. Слайд6.

– Хорошо!

Ученикам предлагается найти сумму десятичныхдробей, у которых разное количество цифр послезапятой 6,23 + 173,3. Учащимся задается вопрос:«Как действовать в этом случае?». (Учащиесяотвечают, что в слагаемых разное количествознаков после запятой).

– Как же быть? (Нужно уравнять, дописав нульсправа у второго слагаемого).

6,32 + 173,7 = 6,32 + 173,70

А теперь можно записать числа в столбик инайти сумму.

Алгоритм сложения десятичных дробейдополняется и выглядит следующим образом:

– А как найти разность двух десятичныхдробей? (Точно так же).

Алгоритм дополняется и выглядит так:

– Итак, как сложить или вычесть десятичныедроби?

Алгоритм повторяется учащимися и появляетсяна экране.

IV. Первичное закрепление полученных знаний

1. Вычислим устно (примеры учащимсяпредлагаются на табличках, а ответы – намагнитных досках):

2. Решение упражнений.

№1213 (а, г, б), №1214 (а, д, е), №1219 (в, е, л).

Источник: https://webupper.ru/ointments-gels/vychitanie-desyatichnyh-drobei-pravila-primery-resheniya/

Тема дроби 5 класс, суть дроби, сложение, вычитание, деление, умножение, примеры с объяснениями. Как понять дроби

Дроби. Вычитание десятичных дробей. Вычитание десятичных дробей, правила, примеры, решения

Практически каждый пятиклассник после первого знакомства с обыкновенными дробями находится в небольшом шоке. Мало того, что нужно еще понять суть дроби, так с ними еще придется выполнять арифметические действия. После этого маленькие ученики будут систематически допрашивать своего учителя, разузнавать когда же эти дроби кончатся.

Чтобы избежать подобных ситуаций, достаточно всего лишь как можно проще объяснить детям эту нелегкую тему, а лучше в игровой форме.

Суть дроби

Перед тем, как узнать что такое дробь, ребенок должен познакомиться с понятием доля. Здесь лучше всего подойдет ассоциативный метод.

Представьте целый торт, который поделили на несколько равных частей, допустим на четыре. Тогда каждый кусочек торта, можно назвать долей. Если взять один из четырех кусков торта, то он будет одной четвертой долей.

Доли бывают разные, потому что, целое можно поделить на совершенно разное количество частей. Чем больше долей в целом, тем они меньше, и наоборот.

Чтобы доли можно было обозначить, придумали такое математическое понятие, как обыкновенная дробь. Дробь позволит нам записать столько долей, сколько потребуется.

Составными частями дроби являются числитель и знаменатель, которые разделены дробной чертой либо наклонной чертой. Многие дети не понимают их смысла, поэтому и суть дроби им не понятна. Дробная черта обозначает деление, здесь нет ничего сложного.

Знаменатель принято записывать снизу, под дробной чертой или справа от накл.черты. Он показывает количество долей целого. Числитель, он записывается сверху над дробной чертой или слева от накл.черты, определяет сколько долей взяли.К примеру дробь 4/7. В данном случае 7-это знаменатель, показывает, что есть всего 7 долей, а числитель 4 указывает на то, что из семи долей взяли четыре.

Основные доли и их запись в дробях:

Помимо обыкновеной, существует еще и десятичная дробь.

Действия с дробями 5 класс

В пятом классе учатся выполнять все арифметические действия с дробями.

Все действия с дробями выполняются по правилам, и надеяться на то, что не выучив правило все получится само сабой не стоит. Поэтому не стоит пренебрегать устной частью домашнего задания по математике.

Мы уже поняли, что запись десятичной и обыкновенной дроби различны, следовательно и арифметические действия будут выполняться по-разному. Действия с обыкновенными дробями зависят от тех чисел, которые стоят в знаменателе, а в десятичной-после запятой справа.

Для дробей, у которых знаменатели одинаковые, алгоритм сложения и вычитания очень прост. Действия выполняем только с числителями.

Пример:

Для дробей с разными знаменателями нужно найти Наименьший Общий Знаменатель ( НОЗ). Это то число, которое будет делиться без остатка на все знаменатели, и будет наименьшим из таких чисел, если их несколько.

Пример:

Для сложения либо вычитания десятичных дробей, нужно записать их в столбик, запятая под запятой, и уравнить количество десятичных знаков если это требуется.

Пример:

Чтобы перемножить обыкновенные дроби просто найди произведение числителей и знаменателей. Очень простое правило.

Пример:

Деление  выполняется по следующему алгоритму:

  1. Делимое записать без изменения
  2. Деление превратить в  умножение
  3. Делитель перевернуть (записать обратную дробь делителю)
  4. Выполнить умножение

Пример:

Сложение дробей, объяснение

Давайте более подробно разберем, как складывать обыкновенные и десятичные дроби.

Как видно на изображении выше, у дроби одна третья и две третьих общий знаменатель три. Значит требуется сложить только числители единицу и два, а знаменатель оставить без изменения. В итоге получается сумма три третьих. Такой ответ, когда числитель и знаменатель дроби равны, можно записать как 1, так как 3:3 = 1.

Требуется найти сумму дробей две третьих и две девятых. В этом случае знаменатели различны, 3 и 9. Чтобы выполнить сложение, нужно подобрать общий. Есть очень простой способ. Выбираем наибольший знаменатель, это 9. Проверяем делится ли он на 3. Так как 9:3 = 3 без остатка, следовательно 9 подходит как общий знаменатель.

Следующим шагом находим дополнительные множители для каждого числителя. Для этого общий знаменатель 9 делим поочередно на знаменатель каждой дроби, полученные числа и будут допол. множ. Для первой дроби: 9:3 = 3, дописываем к числителю первой дроби 3. Для второй дроби: 9:9 = 1, единицу можно не дописывать, так как при умножении на нее получится то же самое число.

Теперь умножаем числители на их дополнительные множители и складываем результаты. Полученная сумма дробь восемь девятых.

Сложение десятичных дробей выполняется по тому же правилу, что и сложение натуральных чисел. В столбик, разряд записывается под разрядом. Единственное отличие в том, что в десятичных дробях нужно правильно поставить запятую в результате. Для этого дроби записываются запятая под запятой, и в сумме требуется лишь снести запятую вниз.

Найдем сумму дробей 38, 251 и 1, 56. Чтобы было удобнее выполнять действия, мы уровняли количество десятичных знаков справа, добавив 0.

Складываем дроби не обращая внимания на запятую. А в полученной сумме просто опускаем запятую вниз. Ответ: 39, 811.

Вычитание дробей, объяснение

Чтобы найти разность дробей две третьих и одна третья, нужно вычислить разность числителей 2-1 = 1, а знаменатель оставить без изменения. В ответе получаем разность одну третью.

Найдем разность дробей пять шестых и семь десятых. Находим общий знаменатель. Используем способ подбора, из 6 и 10 наибольший 10. Проверяем: 10 : 6 без остатка не делится. Добавляем еще 10, получается 20:6, тоже без остатка не делится. Снова увеличиваем на 10, получили 30:6 = 5. Общий знаменатель 30. Так же НОЗ можно найти по таблице умножения.

Находим дополнительные множители. 30:6 = 5 — для первой дроби. 30:10 = 3 — для второй. Перемножаем числители и их доп.множ. Получаем уменьшаемое 25/30 и вычитаемое 21/30. Далее выполняем вычитание числителей, а знаменатель оставляем без изменения.

В результате получилась разность 4/30. Дробь сократимая. Разделим ее на 2. В ответе 2/15.

Деление десятичных дробей 5 класс

В этой теме рассматривается два варианта действий:

Умножение десятичных дробей 5 класс

Вспомните, как вы умножаете натуральные числа, точно таким же способом и находят произведение десятичных дробей. Сначала разберемся, как умножить десятичную дробь на натуральное число. Для этого:

 При умножении десятичной дроби на десятичную, действуем точно также.

Смешанные дроби 5 класс

Пятиклашки любят называть такие дроби не смешанные, а , наверное так легче запомнить. Смешанные дроби называются так от того, что они получились путем соединения целого натурального числа  и обыкновенной дроби.

Смешанная дробь состоит из целой и дробной части.

При чтении таких дробей сначала называют целую часть, затем дробную: одна целая две третьих, две целых одна пятая, три целых две пятых, четыре целых три четвертых.

Как же они получаются, эти смешанные дроби? Все довольно просто. Когда мы получаем в ответе неправильную дробь ( дробь у которой числитель больше знаменателя), мы ее должны всегда переводить в смешанную. Достаточно разделить числитель на знаменатель. Это действие называется выделением целой части:

Перевести смешанную дробь обратно в неправильную тоже несложно:

Примеры с десятичными дробями 5 класс с объяснением

Много вопросов у детей вызывают примеры на несколько действий. Разберем пару таких примеров.

Пример 1.

( 0,4 · 8,25 — 2,025 ) : 0,5 = 

Первым действием находим произведение чисел 8,25 и 0,4. Выполняем умножение по правилу. В ответе отсчитываем справа налево три знака и ставим запятую.

Второе действие находится там же в скобках, это разность. От 3,300 вычитаем 2,025. Записываем действие в столбик, запятая под запятой.

Третье действие-деление. Полученную разность во втором действии делим на 0,5. Запятая переносится на один знак. Результат  2,55.

Ответ: 2,55.

Пример 2.

( 0, 93 + 0, 07 ) : ( 0, 93 — 0, 805 ) =

Первое действие сумма в скобках.Складываем в столбик, помним, что запятая под запятой. Получаем ответ 1,00.

Второе действие разность из второй скобки. Так как у уменьшаемого меньше знаков после запятой, чем у вычитаемого, добавляем недостающий. Результат вычитания 0 ,125.

Третьим действие делим сумму на разность. Запятая переносится на три знака. Получилось деление 1000 на 125.

Ответ: 8.

Примеры с обыкновенными дробями с разными знаменателями 5 класс с объяснением

В первом примере находим сумму дробей 5/8 и 3/7. Общим знаменателем будет число 56. Находим дополнительные множ., разделим 56:8 = 7 и 56:7 = 8.

Дописываем их к первой и второй дроби соответственно. Перемножаем числители и их множители, получаем сумму дробей 35/56 и 24/56.  Получили сумму 59/56. Дробь неправильная, переводим ее в смешанное число.

Остальные примеры решаются аналогично.

Примеры с дробями 5 класс для тренировки

Для удобства переведите смешанные дроби в неправильные и выполняйте действия.

Как научить ребенка легко решать дроби с помощью лего

С помощью такого конструктора можно не только хорошо развивать воображение ребенка, но и объяснить наглядно в игровой форме, что такое доля и дробь.

На картинке ниже показано, что одна часть с восемью кружками это целое. Значит, взяв пазл с четырьмя кружками, получается половина, или 1/2. На картинке наглядно показано, как решать примеры с лего, если считать кружки на деталях.

Вы можете построить башенки из определенного количества частей и подписать каждую из них, как на картинке ниже. Например возьмем башенку из семи частей. Каждая часть зеленого конструктора будет 1/7. Если вы к одной такой части добавите еще две, то получится 3/7. Наглядное объяснение примера 1/7+2/7 = 3/7.

Чтобы получать пятерки по математике не забывайте учить правила и отрабатывать их на практике.

Источник: https://luckclub.ru/kak-reshit-drobi-5-klass-sut-drobi-slozhenie-vychitanie-delenie-umnozhenie-primery-s-obyasneniyami-uchim-rebenka-ponimat-drobi

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.