Какие бывают виды масштабов. Численный, линейный и поперечный масштабы

Решение задач по топографическим планам

Какие бывают виды масштабов. Численный, линейный и поперечный масштабы
называется отношение длины линии на плане (карте) к длине горизонтального проложения соответствующей линии на местности.

В свою очередь,

горизонтальным проложением линии

называется проекция соответствующей наклонной линии на местности на горизонтальную плоскость.

С помощью масштаба решаются две задачи:
1 – определение длины линии на топографическом плане (карте);
2 – построение заданной линии на топографическом плане (карте).

Применяется три типа масштаба:

Численным масштабом

называется масштаб, который выражается дробью, числитель которой равен единице, а знаменатель показывает, во сколько раз горизонтальное проложение линии местности уменьшено при изображении горизонтального проложения линии на плане или карте.

Численный масштаб – величина неименованная. Он записывается так: 1:1000, 1:2000, 1: 5000 и т.д., причём в такой записи 1000, 2000 и 5000 называется знаменателем масштаба М.

Численный масштаб говорит о том, что в одной единице длины линии на плане (карте ) содержится точно столько же единиц длины на местности.

Так, например, в одной единице длины линии на плане 1:5000 содержится точно 5000 таких же единиц длины на местности, а именно: один сантиметр длины линии на плане 1:5000 соответствует 5000 сантиметрам на местности (т.е.

50 метрам на местности); в одном миллиметре длины линии на плане 1:5000 содержится 5000 миллиметров на местности (т.е. в одном миллиметре длины линии на плане 1:5000 содержится 500 сантиметров или 5 метров на местности) и т.д.

При работе с планом в ряде случаев пользуются линейным масштабом.

Линейный масштаб

– графическое построение, (рис. 1) которое является изображением определенного численного масштаба.
Рис.1

Основанием линейного масштаба называется отрезок АВ линейного масштаба (основная доля масштаба), равный обычно 2 см. Он переводится в соответствующую длину на местности и подписывается. Крайнее левое основание масштаба делят на 10 равных частей.

Наименьшее деление основания линейного масштаба равно 1/10 основания масштаба.

Пример: для линейного масштаба (использующегося при работе на топографическом плане масштаба 1:2000), показанного на рисунке 1, основание масштаба АВ равно 2 см (т.е. 40 метрам на местности), а наименьшее деление основания равно 2 мм, что в масштабе 1:2000 соответствует 4 м на местности.

Отрезок cd (рис. 1), взятый с топографического плана масштаба 1:2000, состоит из двух оснований масштаба и двух наименьших делений основания, что, в итоге, соответствует на местности 2х40м+2х2м = 88 м.

Более точное графическое определение и построение длин линий можно сделать с помощью другого графического построения – поперечного масштаба (рис. 2).

Поперечный масштаб

– графическое построение для максимально точного измерения и откладывания расстояний на топографическом плане (карте). Точностью масштаба называется горизонтальный отрезок на местности, который соответствует величине 0,1 мм на плане данного масштаба.

Эта характеристика зависит от разрешающей способности невооруженного человеческого глаза, которая (разрешающая способность) позволяет рассмотреть минимальное расстояние на топографическом плане в 0.1 мм. На местности эта величина будет уже равна 0.

1 мм х М, где М – знаменатель масштаба

Основание AB нормального поперечного масштаба равно, как и в линейном масштабе, также 2 см. Наименьшее деление основания равно CD =1/10 АВ= 2мм.

Наименьшее деление поперечного масштаба равно cd = 1/10 CD =1/100 АВ = 0,2мм (что следует из подобия треугольника BCD и треугольника Bcd).

Таким образом, для численного масштаба 1:2000 основание поперечного масштаба будет соответствовать 40 м, наименьшее деление основания (1/10 основания) равно 4 м, а наименьшее деление масштаба 1/100 АВ равно 0,4 м.

Пример: отрезок ав (рис. 2), взятый с плана масштаба 1:2000, соответствует на местности 137,6 м (3 основания поперечного масштаба (3х40=120 м), 4 наименьших деления основания (4х4=16 м) и 4 наименьших деления масштаба (0.4х4=1.6 м), т.е. 120+16+1.6=137.6 м) .

Остановимся на одной из важнейших характеристик понятия «масштаб».

Точностью масштаба называется горизонтальный отрезок на местности, который соответствует величине 0,1 мм на плане данного масштаба.

Эта характеристика зависит от разрешающей способности невооруженного человеческого глаза, которая (разрешающая способность) позволяет рассмотреть минимальное расстояние на топографическом плане в 0.1мм.

На местности эта величина будет уже равна 0.1 мм х М, где М – знаменатель масштаба.

Рис.2

Поперечный масштаб, в частности, позволяет измерить длину линии на плане (карте) масштаба 1:2000 именно с точностью данного масштаба.

Пример: в 1 мм плана 1:2000 содержится 2000 мм местности, а в 0,1мм, соответственно, 0,1 x М (мм) = 0.1 х 2000 мм = 200 мм = 20 см, т.е. 0,2 м.

Поэтому при измерении (построении) на плане длины линии ее значение следует округлить с точностью масштаба. Пример: при измерении (построении) линии длиной 58,37 м (рис. 3), ее значение в масштабе 1:2000 (с точностью масштаба 0,2 м) округляется до 58,4 м, а в масштабе 1:500 (точность масштаба 0,05 м) – длина линии округляется уже до 58,35 м.

Рис.3

Для пользования топографическими планами необходимо изучить условные знаки, принятые для данного масштаба.

Условные знаки – графические обозначения, которые показывают местоположение предметов и явлений, а также их количественные и качественные характеристики.

Они издаются в виде отдельных таблиц или таблиц на учебных планах. Условные знаки делятся на масштабные (контурные), и внемасштабные.

Масштабными называются условные знаки, которыми местные предметы изображаются в масштабе данного плана, т.е. крупные объекты, например, пашни, луга, леса, моря, озера и т.п.

Внемасштабные условные знаки – знаки, показывающие предметы, которые вследствие своей малости не могут быть изображены в масштабе плана (ширина дорог, колодцы, родники, мосты, опоры ЛЭП, столбы электросети и т.д.). Величина этих знаков не соответствует истинным размерам изображаемых предметов.

Линейные знаки – картографические условные знаки, применяемые для изображения объектов линейного характера, длина которых выражается в масштабе карты, но ширина значительно превышает их фактическую ширину.

Площадные условные знаки – картографические условные знаки, применяемые для заполнения площадей объектов, выражающихся в масштабе карты.

Внемасштабные линейные знаки – картографические условные знаки, применяемые для изображения объектов линейного характера, длина которых не выражается в масштабе карты.

Внемасштабные площадные условные знаки – картографические условные знаки, применяемые для изображения объектов, площади которых не выражаются в масштабе карты (плана).

Пояснительные подписи – подписи, поясняющие вид или род изображенных на карте объектов, а также их количественные и качественные характеристики.

Штриховые элементы карты (плана) – элементы карты (плана), выполненные линиями, штрихами или точками.

Фоновые элементы карты (плана) – элементы карты (плана), выполненные каким-либо цветовым фоном.

Скачать условные знаки для топографических планов:

По топографическому плану можно решить ряд задач, в том числе определить: прямоугольные координаты точки; длину линии; дирекционный угол и румб линии; отметку точки; уклон, крутизну ската и др. Порядок решения этих задач показан на примере учебного плана масштаба 1:2000.

Определение прямоугольных
координат точек

На топографических планах наносится координатная сетка, образующая квадраты со сторонами 10 см. Вертикальные линии сетки параллельны оси абсцисс, а горизонтальные – оси ординат. Координаты вершин квадратов координатной сетки подписываются. Для быстрого нахождения какой-нибудь точки на топографическом плане указывают нижний левый угол соответствующего квадрата сетки координат.

Пример: запись 79,2 означает, что абсцисса линии сетки Х = 79,2 км, т.е. отстоит по оси Х от начала координат на 79200 м. Запись 66,2 означает, что ордината линии сетки Y = 66,2 км, т.е. отстоит по оси У от начала координат на 66200 м.

Для быстрого нахождения какой-нибудь точки на топографическом плане указывают нижний левый угол соответствующего квадрата сетки координат.

Пример: пользуясь координатной сеткой, циркулем и поперечным масштабом, по топографическому плану можно определить прямоугольные координаты точки А (рис. 4), находящейся в квадрате 79,2 – 66,2. Необходимо помнить, что абсциссы возрастают к северу, а ординаты – к востоку.

Сначала записывают в метрах абсциссу Х (южной) линии квадрата, в котором находится точка А, т.е. Х(южной линии сетки) =79200,0 м.

Циркулем и поперечным масштабом определяют расстояние Δх = Y(а)-Y(А) также в метрах с точностью масштаба.

Полученную величину Δх=64,8 м прибавляют к абсциссе нижней (южной) линии квадрата Х(южной линии сетки) =79200,0 м и находят абсциссу точки А: Х(А) = 79200,0 + 64,8 = 79264,8 м.

Рис.4

Аналогично определяют ординату точки А: к значению ординаты западной линии сетки квадрата У(западной линии сетки) =66200,0 м прибавляют длину отрезка Δy =y(A)-y(b), равную 141,6 м, и получают Y(А) = 66200,0 + 141,6 = 66341,6 м.

Расстояние между точками А и В измеряется циркулем, значение длины линии АВ находится по поперечному масштабу и записывается с точностью масштаба.

Дирекционным углом α называется горизонтальный угол, отсчитываемый от северного направления осевого меридиана, по ходу часовой стрелки, до направления данной линии.

Дирекционный угол α линии АВ можно измерить с помощью транспортира. На рис. 5 представлены дирекционные углы α1, α2, α3, и α4 четырех линий М-1, М-2, М-3, М-4.

Рис.5

Дирекционный угол заданного направления α пр называется прямым, а противоположного – обратным α обр (рис. 6).

Рис.6

Связь между прямым и обратным дирекционными углами выглядит так:

Румбом (r) называется острый горизонтальный угол между северным или южным направлением оси ОХ координатной сетки и направлением данной линии.

Румбы могут иметь значения от 0 до 90 градусов и сопровождаются названием четверти, в которой находится линия. На рис. 7 показаны румбы четырех линий М-1, М-2, М-3, М-4.

Румбы этих линий записывают: СВ: r1; ЮВ: r2; ЮЗ: r3; и СЗ: r4, где, например, СВ – наименование румба, а r1 – значение румба. Например, так выглядит записанный румб: ЮВ: 30º15'

Рис.7

Румб заданного направления r пр. называется прямым, а противоположного – обратным r обр. Прямой и обратный румбы равны по величине и отличаются только наименованием (рис. 8).

Например, если прямой румб равен r пр = СВ: 350º, то обратный румб равен r обр= ЮЗ: 350º.

Рис.8

Таблица перехода от дирекционных углов α к румбам r приведена ниже.

Формулы перехода от дирекционных углов к румбам

Высотой Н точки местности называется расстояние по направлению отвесной линии от точки до уровенной поверхности.

Например, Н(А) = A(a) – высота точки А над уровенной по-верхностью PQ, Н(В) = B(b) – высота точки B над уровенной по-верхностью PQ (рис. 9).

Отметкой точки местности называется численное значение высоты точки. Например, Н(А) = 150 м, Н(В) =149 м.

На топографическом плане рельеф изображается надписями отметок отдельных характерных точек, условными знаками (промоина, обрыв и т. п.) и горизонта-лями.

Горизонталями называются замкнутые кривые линии, со-единяющие точки местности с одинаковыми отметками. Горизонтали образуются путём пересечения поверхности местности секущими горизонтальными плоскостями, проведенными через заданное расстояние, которое называется высотой сечения рельефа h.

Заложением называется расстояние d на плане между двумя соседними горизонталями (рис. 9 – 11).

Рис.9

По отметкам двух смежных (соседних) горизонталей можно определить отметку точки, лежащей между ними. Например: отметка первой точки В на нижней (рис. 10) горизонтали H1 = 161 м, отметка второй точки А на верхней (рис.

10) горизонтали H2 = 162 м (т.е. высота сечения рельефа h = 1 м), заложение d = 16,8 м, расстояние от первой горизонтали до точки С равно с = 7,6 м (рис. 10).

Тогда (с требуемой точностью до 0,1 м) вычисляем отметку НС точки С по формуле

Рис.10 Крутизна ската – это угол, образуемый направлением ската с горизонтальной плоскостью в данной точке А. Уклон u линии местности – это тангенс угла наклона ν линии местности (тангенс крутизны ската) к горизонтальной плоскости (рис. 11).

Рис.11

Чем больше угол наклона, тем скат круче.

Для нашего примера уклон линии местности между горизонталями равен

Скачать примеры (docx file)
Скачать пустой шаблон (docx file)
Пройти тест

Источник: http://geo-s.sibstrin.ru/electr/index.html

Точность масштаба: определение, особенности и виды

Какие бывают виды масштабов. Численный, линейный и поперечный масштабы

Среди главных характеристик карт местности чаще всех выделяют данную. Это точность масштаба. В статье мы разберем, что скрывает в себе данное понятие. Также рассмотрим, что такое масштаб вообще, охарактеризуем его основные разновидности. Разберем, как понятие “графическая точность” связано с предметом нашего разговора.

Что это?

Масштаб – это важное уточнение, показывающее, во сколько каждая линия, что была нанесена на чертеж, план, меньше или больше настоящих размеров объекта, который она изображает. Такие уточнения представляются на чертежных документах и картах как численно, так и графически.

Масштабы планов, точность масштабов – понятия, которые можно встретить в самых разнообразных сферах:

  • Картография.
  • Проектирование.
  • Геодезия.
  • Фотография.
  • Моделизм.
  • Программирование.
  • Математика.
  • Кинотехника.

Некоторые из этих применений, их особенности мы рассмотрим по ходу статьи.

Точность масштаба

И теперь определение ключевого понятия. Точность масштаба – часть горизонтального проложения линии, которая будет означать 0,1 мм на чертеже. Почему выбрано такое значение?

0,1 мм тут принят из-за того, что это наименьший отрезок, который может различить глаз человека на изображении без использования специальной техники, инструментов, приборов.

Приведем конкретный пример. Дано 1:10000. Точность масштаба станет составлять, соответственно, 1 м. Разберем подробнее:

  • 1 см на плане или изображении – это 10 000 см (или 100 м) на реальной местности.
  • 1 мм на изображении – это 1 000 см (или 10 м).
  • 0,1 мм – это 100 см (или 1 м) на реальной местности.

Таким образом несложно определить предельную точность масштаба. Это расстояние реальной поверхности, равное 0,1 мм на карте – минимальному отрезку, который способен различить человек.

Графическая точность

А теперь познакомимся с графической точностью масштабов. Это еще одна значимая характеристика при использовании планов и карт.

Графическая точность связывается с разрешением “и” глаза человека. В свою очередь, оно составляет “Г”. Отсюда Г=и.

То есть, если угол “и” между векторами на две точки “В” и “Л” при рассматривании их наблюдателем с нормальным уровнем зрения составляет “Г” или же более, то они будут восприниматься, как две точки. Если же данный угол к понятию разрешения меньше “Г”, то “Л” и “В” будут восприниматься человеком как одна точка.

Лучше всего тут познакомиться с определением точности масштаба на конкретном примере. Допустим, человек рассматривает карту с наилучшего расстояния “б”, равного 35 см. Значение Г=и. Теперь нужно определить наименьшее расстояние (то есть, графическую точность) между “В” и “Л”, при котором они еще будут восприниматься наблюдателем в виде двух разных точек. Тут проводится такое вычисление:

1 – ис! – 1/3438 х 350 мм = 0,1 мм.

1/3438 – это значение угла и=Г, которое в данном случае выражено в радианах (3438' – количество минут в радиане).

Таким образом, вышедшее значение 0,1 мм – графическая точность плана или карты.

Связь понятий

А теперь посмотрим, как вышеобозначенный термин соотносится с главным. Точность масштаба – это, как мы помним, расстояние на поверхности Земли, что равняется 0,1 мм на документе.

Можно вывести формулу:

Т = гМ = 0,1 М мм.

Расшифруем ее элементы:

  • Т – точность масштаба.
  • М – знаменатель масштаба.
  • г = 0,1 мм – графическая точность.

Отсюда можно вывести и связанную трактовку. Точность масштаба – графическая точность, что выражается в масштабе карты или плана. И что же в итоге? Графическая точность станет выступать константой (0,1 мм) для всех существующих масштабов.

Соответственно, точность масштаба станет изменяться вместе с ним самим. Она будет тем выше, чем крупнее составитель выбрал масштаб.

А теперь разберемся с особенностями такой характеристики, как масштаб, в различных сферах применения.

Проектирование, геодезия и картография

Мы в курсе, что обозначает точность “500” масштаба – 1:500. Рассмотрим теперь, какие его разновидности характерны для сферы проектирования, картографии и геодезии:

  • Численный масштаб. Показатель прописывается в виде дроби. В ее числителе будет стоять единица, а в знаменателе – какая-либо степень уменьшения проекции на карте. Для примера возьмем масштаб 1:5 000. Он обозначает, что 1 см на плане, карте – это 5 000 см (или 50 м) на реальной местности. Соответственно, тут будет более крупным тот масштаб, который отличается меньшим знаменателем. Так, 1:1 000 будет крупнее, нежели 1:20 000.
  • Именованный масштаб. Составитель карты прописывает на документе, какое расстояние на реальной местности равняется 1 см на плане. Вот пример: “В 1 сантиметре – 1000 километров”. Или же кратко: “1 см = 100 км”.
  • Графический масштаб. В свою очередь, будет разделяться на поперечный и линейный. Разберем их отдельно.

Разновидности графической категории

Какова же точность масштаба – поперечного масштаба? Познакомимся с характеристиками:

  • Линейный. Такой графический масштаб на карте представляется в виде линейки, которая будет разделена на реальные части.
  • Поперечный. Это графический масштаб, представленный в виде номограммы. Ее построение зиждется на пропорциональности частей параллельных прямых, что пересекают стороны угла. Такой масштаб применим для более точного измерения протяженности линий на планах. Пользуются им таким образом: производят на нижней линии данного поперечного масштаба замер длины так, чтобы правый конец находился на целом расстоянии (ОМ), а левый был за 0. Если при этом левая ножка окажется между десятыми делениями, соответственно, левого отрезка (от 0), то специалист подымает обе ножки измерителя кверху. Пока левая ножка измерителя не встанет уже на пересечении какой-либо горизонтальной линии и какой-либо трансверсали. А вот правая ножка тоже должна быть на этой горизонтальной черте. Минимальная ЦД здесь – 0,2 мм. Соответственно, наименьшая точность – 0,1 мм.

Ряд масштабов изображений в проектировании

Мы уже знаем, что означает точность масштаба 1:500. Но в каких случаях ее выбирает составитель? Разберем и этот вопрос:

  • Масштабы уменьшения. Соответственно, используются в случаях, когда на плане нужно изобразить объект, местность, значительно превышающую его по площади. Если же составитель обращается к проектированию генеральных планов особо крупных размеров, то он ему пригодится использование следующих масштабов: 1:2 000, 1:5 000, 1:10 000, 1:20 000, 1:25 000, 1:50 000.
  • Натуральная величина. Если требуется изобразить объект на плане так, “как он есть”, то обращаются к масштабу “один к одному”. Соответственно 1 см реальной длины тут будет соответствовать 1 см длины на плане.
  • Масштабы увеличения. Необходимы в случаях, когда требуется изобразить на плане слишком маленький объект для детального ознакомления с его внешним видом, устройством.

В фотографии

Конечно, точность масштаба 1:10 000 более связывается с картографией. Но это применимо и для мира фотосъемки. Под масштабом здесь подразумевается отношение так называемых линейных размеров изображения, полученного на сверхчувствительной матрице или же на фотопленке, к размеру проекции соответствующей зоны проекции на плоскость, которая перпендикулярна к камере.

Есть фотографы, которые измеряют масштаб в виде отношения размеров реального объекта к его размерам на экране, фотобумаге или другом носителе. Но верный способ определения масштаба в фотографии зависит только от контекста, в котором использовано изображение.

В фотосъемке масштаб характеризуется важным значением и при расчете глубины какого-либо резко изображаемого объекта, пространства.

Сегодня специалистам доступен весьма широкий выбор диапазонов масштабов от бесконечно малого (применяется при съемке далеких небесных тел) до весьма крупного (без использования специальных оптических насадок, например, сегодня возможно получить снимок масштабом 10:1).

Здесь макрофотографией считается уже съемка в масштабе 1:1 (и, соответственно, крупнее). Но с распространением цифровых компактных фотоаппаратов макросъемкой также стали называть стиль, когда объектив располагают слишком близко к объекту. Если рассматривать классическое определение, то подобное толкование не будет верным.

В моделизме

Для каждого из видов стендового (или масштабного) моделизма определены свои масштабные ряды. Они состоят из нескольких масштабов, характеризующихся определенной степенью уменьшения.

Что интересно, для каждого из видов моделизма (железнодорожного, автомобильного, судомоделизма, военной техники, авиамоделизма) есть определенные исторически сформированные масштабные ряды, которые не пересекаются с иными.

Здесь масштаб исчисляется по простой формуле:

L / М = Х.

Расшифруем:

  • L – параметры оригинала.
  • М – необходимый для работы масштаб.
  • Х – нужное значение.

В программировании

В этой сфере будет важен так называемый масштаб времени. Разберемся, что это.

В ОС с разделением времени весьма важную роль имеет предоставление конкретно взятым задачам “режима реального времени”.

Он отличается тем, что обработка внешних событий идет без дополнительных задержек или пропусков. Здесь важным будет еще одно понятие – “реальный масштаб времени”.

Но стоит понимать, что к масштабу на картах он прямого отношения не имеет. Это всего лишь терминологическая условность.

В кинотехнике

В кинотехнике тоже важна точность масштаба времени. Под последним подразумевается количественный показатель замедления либо ускорения движения, который будет равняться отношению проекционный частоты кадров к частоте съемочной.

Рассмотрим это на простом примере. Проекционная частота кадров при съемке фильма составляет 24 кадра/сек. Киносъемка производилась при этом “со скоростью” 72 кадра/сек. Масштаб времени в данном случае будет равен 1:3.

А что тогда будет означать, к примеру, 2:1? Это ускоренное в два раза по сравнению со стандартным протеканием происходящего на экране.

В математике

В этой сфере под масштабом понимается линейное соотношение двух размеров. Также во многих практически применимых областях так будет называться отношение размера изображения к реальному размеру изображаемого.

В математике масштаб – это отношение какого-либо расстояния на карте уже к реальному расстоянию на реальной местности. Если рассмотреть на примере, это то же самое, что и в картографии. Допустим, 1:100 000 000. Значит, 1 см на изображении – это 100 000 см в реальности. То есть, тысяча метров или один километр.

Масштаб – широко применимая характеристика. Это стандартная и неотъемлемая составляющая при разработке планов, чертежей объектов, карт местности. Используется при проектировании, в геодезии, картографии, актуальна при фотосъемке, в кинотехнике, программировании и математике. Саму же ее главным образом характеризует точность – отношение реального расстояния к принятому на карте.

Источник: https://FB.ru/article/431535/tochnost-masshtaba-opredelenie-osobennosti-i-vidyi

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.