Программа для использования веб камеры как микроскопа. Правильный USB микроскоп для пайки или микроскоп с реальным увеличением x1200

Содержание

Микроскоп своими руками пошаговая инструкция с увеличение x200

Программа для использования веб камеры как микроскопа. Правильный USB микроскоп для пайки или микроскоп с реальным увеличением x1200

В статье расскажем как сделать как сделать микроскоп своими руками с увеличением х200, пошаговая инструкция и результатами экспериментов: луковая кожица, кровь, лист.

Здравствуйте! все, вы когда-нибудь мечтали исследовать микроскопический мир? Могу поспорить, что большинство из вас скажет ДА! Но инструменты, которые требуются, очень дорогие. Но есть решение, которое дает достойные результаты, которое будет стоить всего несколько долларов.

Микроскопы используют линзы высокой мощности, чтобы сделать изображение с большим увеличением. Просто если у нас есть мощный объектив мы сможем это сделать. В обычных микроскопах изображение сфокусировано прямо на наших глазах. Это требует очень сложной конструкции линзы.

 Используя смартфон и мощный объектив, мы можем сделать это очень простым способом. Просто нужно держать объектив перед камерой смартфона, прикасаясь друг к другу. Затем через камеру вы можете увидеть сильно увеличенное изображение.

Но для того, чтобы постоянно наблюдать за образцом, мы должны создать установку. Итак, давайте приступим!

Подготовка объектива

В этом проекте мы используем линзы высокой мощности, эти линзы очень дороги на рынке. Но мы можем найти их в головке устройства чтения DVD / CD. На самом деле они обладают высокой способностью увеличения для считывания записанных данных в микромасштабе.

Как показано на изображениях, безопасно снимите линзу с ридера. Даже небольшая царапина испортит его.

Материалы и инструменты

В этом проекте мы собираемся использовать объектив высокой мощности, который можно найти в DVD/CD-ридере с камерой смартфона, чтобы получить сильно увеличенное изображение. В списке материалов я упомянул медную доску, она понадобится для подставки под смартфон. Можно использовать любой материал.

1. 1/2 дюйма ПВХ трубы (около 20 см)

2. Стеклянный лист — около 25 см х 16 см

3. 2 мм диаметром 1 ‘1/2 дюйма длиной гайки и болта

4. Медная доска или Акрил

5. Объектив от DVD/CD-ридера

6. Акриловый клей

Инструменты:

1. Ножовочная пила

2. Сверло 2 мм

3. Горячий клеевой пистолет

Платформа для телефона

Чтобы получить четкое представление об образце, нам нужно, чтобы вся установка была устойчивой. Для этого мы используем медный лист, чтобы он соответствовал смартфону. Размеры листа будут всего на 2 мм больше, чем у смартфона по длине и ширине

Теперь у нас есть платформа, которая подходит для нашего смартфона. Следующий шаг — сделать отверстия для объектива и четыре винта. Перед этим я должен кое-что рассказать о дизайне.

 Для держателя телефона требуется механизм, позволяющий идеально сфокусировать установку на наблюдаемом образце. Для этого я буду использовать четыре винта, которые позволят изменить расстояние между линзой и образцом. Эти винты будут размещены в четырех углах платы держателя.

При сверлении отверстия для камеры уделите время и отметьте точку, где находится камера.

После сверления отверстий самое время поместить четыре гайки болтов в углы. С помощью сильного клея поместите их идеально выровненными. Следите за тем, чтобы клей не пролился на резьбу винтов.

После установки четырех гаек самое время разместить линзу. Перед установкой линзы очистите неровные края просверленного отверстия. Затем поместите линзу на просверленное отверстие.

2 мм отверстие идеально облегают линзу и она не падает. Затем приклейте линзу небольшим количеством клея. Это очень сложная часть. Будьте осторожны, любое крошечное смещение может привести к ложному результату.

Подставка для телефона готова!

Создание подиума для микроскопа

До этого момента мы завершили держатель. Итак, теперь нам нужна подиум для образца. Я выбрал стеклянную пластину для этой цели. Это позволяет помещать образец непосредственно на подиум. В то время как смартфон может свободно перемещаться и наблюдать любую часть образца. Это может немного запутать вас, но это будет ясно на изображениях.

Для того, чтобы видеть через этот микроскоп, нам нужно освещение. Чтобы освободить место для освещения, я поднял сцену с помощью четырех труб из ПВХ, нарезанных на одинаковую длину около 5 см.

Затем мы устанавливаем метод освещения под стеклянной сценой. В моем случае Я использую фонарик телефона. Это легко и идеально подходит для этого проекта.

Я испробовал много источников света, но смартфон-фонарик дал лучшие результаты.

Проверяем наш самодельный микроскоп

Теперь у нас есть готовый микроскоп. Посмотрим, как с этим работать. Прежде всего мы должны сбалансировать платформу телефона. Для этого, повернув четыре винта, вы можете изменить высоту держателя телефона.

 Держите высоту примерно на 2-3 мм. Хорошо, теперь вы должны поместить камеру вашего телефона идеально выровненной с объективом на платформе телефона.

Это можно сделать, включив приложение камеры и выровняв его до получения идеального изображения.

После этого нам нужен образец для наблюдения. Как вы можете видеть на изображении, я поместил 2 луковичные ткани. Поскольку у нас достаточно места, можно разместить более одного образца. Затем включите вспышку.

 Теперь вы можете сдвинуть платформу телефона на стекло, пока изображение с камеры не покажет сфокусированное изображение ткани.

Фокусировка может быть выполнена с помощью двух винтов, которые наиболее близко расположены к камере.

Результаты экспериментов под самодельным микроскопом

Вы не поверите результатам этого микроскопа. Трудно поверить, что возможно получить такие результаты с помощью этого простого микроскопа DIY. Примерно увеличение составляет около 200x. Ниже будут результаты под данным самодельным микроскопом.

Луковая кожица под микроскопом

клеточные стенки и ядрышки хорошо видны.

Клетка крови под микроскопом своими руками

Клетки крови кажутся красными, когда они слипаются. В распределенном виде они могут быть видны как маленькие пузырьки или рыбья икра.

Источник: https://meanders.ru/kak-sdelat-mikroskop-svoimi-rukami-s-uvelicheniem-h200.shtml

Топ 5 лучших микроскопов для пайки

Программа для использования веб камеры как микроскопа. Правильный USB микроскоп для пайки или микроскоп с реальным увеличением x1200

Друзья! Добро пожаловать к Мастеру Пайки на огонек! Сегодня приведу свой Топ 5 лучших микроскопов для пайки. Я расскажу не только о зарубежных микроскопах для  ремонта. Будет и про цифровые микроскопы, которые можно сделать своими руками из USB веб-камеры, старого фотоаппарата или мобильного телефона.

А теперь приведу критерии, по которым расставлен этот рейтинг и выбран лучший микроскоп для пайки микросхем. Прежде всего — это качество изображения, удобство работы и конечно соотношение цена-качество.

Микроскопы для пайки и ремонта электроники, рекомендуемые к покупке

В конце я приведу обзор микроскопа для пайки микросхем и метод крепления микроскопа на рабочем столе, давно и любезно предоставленный Мастером Сергеем.

5 место — микроскоп для пайки своими руками

А начнем мы с электронных видеомикроскопов сделанных своими руками из веб-камеры или старого фотоаппарата. Такие микроскопы широко применяются непрофессионалами и начинающими мастерами.

Качество изображения с них оставляет желать лучшего. А временная задержка может свести на нет все героические свершения ремонтника. Часто таким микроскопам не хватает кратности увеличения. Чаще всего она составляет 10х-30х, как у детских микроскопов.

Напомню, что для комфортной пайки под микроскопом, его кратность увеличения должна быть около 20х-40х с рабочим расстоянием 180-190 мм.

Как сделать цифровой микроскоп из веб-камеры

Цифровой USB микроскоп из веб камеры для пайки своими руками сделать достаточно легко — нужно всего лишь заменить оптику на более короткофокусную. Иногда срабатывает методика переворота родного объектива на 180 градусов. В таком случае дополнительно подбирают оптимальное расстояние до матрицы. Обычно это 2-3 мм.

Еще можно использовать оптику от детских игрушек: прицела или фотоувеличителя. Камеру для пайки лучше выбирать с разрешением побольше, а размерами поменьше. Так будет удобнее работать с ней во время пайки и ремонта.

Как видите, USB микроскоп из веб камеры для пайки достаточно легко сделать из подручных материалов в течение нескольких часов. Для этого понадобится:

  • веб камера;
  • паяльник с припоем и флюсом;
  • отвертки;
  • запчасти для штатива;
  • светодиоды подсветки, если их нет в камере;
  • клей или эпоксидная смола;
  • программа для трансляции изображения на ЖК монитор.

Вот такая конструкция самодельного микроскопа из камеры для осмотра SMD может получиться.

Недостатки микроскопа из веб камеры:

  • большое запаздывание видеосигнала, а значит и неудобство пайки;
  • малое разрешение видеокадра (чаще всего это 640 х 480 точек);
  • штатив, подсветку и позиционирование приходится делать своими руками;
  • требуется компьютер или ноутбук рядом с камерой.

Достоинства микроскопа из веб-камеры:

  • веб-камеру можно использовать старую, но рабочую;
  • это самый дешевый вариант, как правило, сделанный в домашних условиях без затрат;
  • есть поле для творчества и фантазии;
  • годится для визуальной диагностики микротрещин в пайке;
  • с родной перевернутой оптикой достигается увеличение 10х-20х.

Следующий видеоролик посвящен принципу изготовления микроскопа из веб-камеры своими руками. Использован штатив и приведено видео процесса пайки USB-разъема.

Микроскоп из фотоаппарата

Честно говоря выглядит такой «микроскоп» достаточно странно. Принцип тот же, что и с веб-камерой — переворачивают оптику на 180 градусов. Для зеркальных фотоаппаратов даже есть специальные реверсивные адаптеры.

Ниже показано какое изображение получается с такого самодельного микроскопа для пайки. Видна большая глубина резкости — это нормально.

Недостатки самодельного микроскопа::

  • малое рабочее расстояние;
  • большие габариты;
  • нужно придумывать камеру удобно крепить.

Достоинства фотокамеры для пайки:

  • можно сделать из имеющейся зеркальной камеры;
  • плавно регулируется увеличение;
  • есть автофокус.

Микроскоп из мобильного телефона

Самый популярный способ сделать микроскоп из мобильного телефона своими руками — это прикрутить к камере смартфона линзу от CD- или DVD- проигрывателя. Получается вот такая конструкция микроскопа.

Линзы в этой технике применяют с очень малым фокусным расстоянием. Поэтому с помощью такого микроскопа получится только контролировать состояние пайки SMD компонентов и искать микротрещины в припое. Паяльником между платой и линзой просто не подлезешь. Ниже приведу видео, на котором видно какое увеличение дает такой самодельный микроскоп.

Еще один вариант — микроскоп на клипсе для мобильника . Эта штука выглядит вот так и стоит совсем копейки.

В более продвинутых случаях мобильный телефон вешают на уже имеющийся стерео- или моно- микроскоп для пайки мелких деталей. Некоторые хорошие снимки у меня так и получались. Этот метод важен, когда нужно сделать микрофотографии для обучения или консультаций с другими мастерами.

4 место — USB микроскоп для пайки

Сейчас популярны китайские USB микроскопы по сути сделанные из веб-камер на 2 Mpix и 13 Mpix или даже с со встроенным монитором, например USB-микроскопы G600 и Andonstar ADSM301. Такие электронные микроскопы больше предназначены для визуальной диагностики электроники, видеоинспекции качества пайки или, например, для проверки заточки ножей.

Напомню, что задержка видеосигнала в таких микроскопах значительная. Со встроенным монитором намного легче паять, но отсутствует глубина резкости и объемное восприятие микрообъектов.

Недостатки USB микроскопа:

  • временные лаги, не позволяющие быстро паять;
  • малое оптическое разрешение;
  • отсутствие объемного восприятия;
  • как правило, это стационарный вариант, привязанный к компьютеру или розетке.

Достоинства USB микроскопа:

  • возможность работать на комфортном расстоянии для глаз;
  • можно снимать видеоролики и фотографии;
  • сравнительно низкая стоимость;
  • малый вес и габариты;
  • можно легко смотреть на плату под углом.

ролик с обзором дешевого USB-микроскопа смотрите ниже.

3 место — китайский микроскоп для пайки

Микроскопы, предназначенные для пайки — это бинокулярные и тринокулярные микроскопы.

Скажу сразу, что вся продукция часто предлагаемой компании YaXun является попыткой снизить стоимость микроскопа за счет снижения качества. Пластиковые линзы и плохое сведение окуляров не дает паять под ними долгое время.

По крайней мере, почти все знакомые Мастера, у которых были такие микроскопы, жаловались на здоровье. Встречались сообщения, в которых люди брали оптику от серии МБС и ставили на YaXun — как-то помогало.

Достаточной популярностью пользуются тринокулярные микроскопы Minsvision, Fyscope, Luckyzoom SZM45 и Omano OM2300S.

Отзывы о них довольно хорошие. Оба они конечно не образцы для подражания, но выглядят внушительно. Качество изображения хорошее, рабочее расстояние 100 или 200 мм в зависимости от насадок. Эти микроскопы могут быть использованы для пайки при настройке и должном уходе.

Мини-обзор смотрите в видеоролике, изображение в объектив показывают на 9-ой минуте.

2 место — импортный микроскоп для пайки

Среди зарубежных брендов, микроскопной техникой славятся компании Carl Zeiss, Reichers, Tamron, Leica, Olympus, Nikon.

Такие модели, как Nikon SMZ-1, Olympus VMZ, Leica GZ6, Olympus SZ3060, Olympus SZ4045ESD, Nikon SMZ-645 по праву заслужили звания народных бинокулярных микроскопов для пайки за их качество картинки.

Ниже приведу примерные цены на популярные зарубежные модели:

  • Leica s6e/s4e (7-40x) 110 мм — 1300 $;
  • Leica GZ6 (7x-40x) 110 мм — 900 $;
  • Olympus sz4045 (6,7х-40х) 110 мм — 500 $;
  • Olympus VMZ 1-4x 10х 90 мм — 500 $;
  • Nikon SMZ-645 (8х-50х) 115 мм — 800 $;
  • Nikon SMZ-1 (7x-30x) 100 мм — 400 $;
  • добротный Nikon SMZ-10a — 1500 $.

В принципе цены не космические, но это б/у микроскопы, которые можно купить на eBay или Amazon с платной доставкой. Выгодность тут нужно в каждом частном случае рассматривать отдельно.

1 место — отечественный микроскоп для пайки

Среди истинно отечественных микроскопов хорошо известен ЛОМО и делают они прикладные микроскопы под маркой МСП. Самые подходящие для пайки из новых микроскопов — это МСП-1 вариант 23 или МБС-12. Правда ценник у них недетский.

Вынужден сказать, что Альтами, Биомед, Микромед, Levenhuk — все это отечественные продавцы китайских микроскопов. На качество исполнения многие жалуются.

Для профессионального применения их не рассматриваем. Правда попадаются терпимые экземпляры. Это зависит от условий транспортировки и хранения.

Дело в том, что оптика у них юстирована с помощью силиконового клея с соответствующей надежностью.

Из старых запасов или б/у истинно советские можно взять на Авито:

  • БМ-51-2 8,75х 140 мм — 5 тыс. руб. поиграться;
  • МБС-1 (МБС-2) 3х-100х 65 мм — до 20 тыс. руб.;
  • МБС-9 3х-100х 65 мм — до 20 тыс. руб.;
  • ОГМЭ-П3 3х-100х 65/190мм — до 20 тыс. руб. (у меня такой на работе, нравится);
  • МБС-10 3х-100х 95 мм — до 30 тыс. руб.;
  • БМИ-1Ц 45х 200 мм — более 200 тыс. руб. — измерительный.

Итоги рейтинга микроскопов

Если вы еще думаете какой выбрать микроскоп для пайки, то мой победитель — МБС-10 — народный выбор вот уже много лет.

микроскопов по назначению

Этот рейтинг взят у одного специалиста по микроскопам и значительно сокращен для удобства чтения.

Микроскоп для ремонта мобильных телефонов

Следующие микроскопы для пайки и ремонта смартфонов отсортированы по росту качества картинки:

  • МБС-10 (пониженный контраст, нереальные цвета при больших увеличениях, дискретное переключение увеличений, 90 мм расстояния);
  • МБС-9 (65 мм расстояние и слабый контраст);
  • Nikon SMZ-2b/2t 10см (8х-50х)/(10-63x);
  • Nikon SMZ-645 (8х-50х) 115 мм;
  • Leica s6e/s4e (7-40x) 110 мм;
  • Olympus sz61 (7-45x) 110 мм;
  • Leica GZ6 (7x-40x) 110 мм;
  • Olympus sz4045 (6,7х-40х) 110 мм;
  • Оlympus VMZ 1-4x 10х с рабочим расстоянием 90 мм;
  • Olympus sz3060 (9x-40x) 110 мм;
  • Nikon SMZ-1 (7x-30x) 100 мм;
  • Bausch and Lomb StereoZoom 7 (рабочее расстояние всего 77 мм);
  • Leica StereoZoom 7;
  • Nikon SMZ-10a с объективом Nikon Plan ED 1x и окулярами 10х/23 мм;
  • Nikon SMZ-U (7,5x-75x) рабочее расстояние с Nikon Plan ED 1x 85 мм, с оригинальными окулярами 10х/24 мм.

Микроскоп для ремонта планшетов и материнских плат

Для таких применений вопрос предельного разрешения не так важен, там рабочими являются увеличения 7х-15х. Для них нужен хороший универсальный штатив и маленькое минимальное увеличение. Следующие микроскопы для пайки материнских плат и планшетов отсортированы по степени увеличения качества картинки:

  • Leica s4e/s6e (110mm) с полем 35 мм;
  • Olympus sz4045/sz51/sz61 (110mm) с полем 33 мм;
  • Nikon SMZ-1 (100мм) с полем 31.5 мм;
  • Olympus sz4045;
  • Olympus sz51/61;
  • Leica s4e/s6e;
  • Nikon SMZ-1.

Микроскоп для ювелира или зубного техника

Следующие микроскопы для зубного техника или ювелира с большим рабочим расстоянием отсортированы по степени улучшения качества картинки:

  • Nikon SMZ-1 (7х-30х) с окулярами 10х/21 мм;
  • Leica GZ4 (7х-30х) 9 см с линзой 0,5х (19 см);
  • Olympus sz4045 150 мм;
  • Nikon SMZ-10 150 мм.

Микроскоп для гравировки

Следующие микроскопы для гравировки c с большой глубиной резкости отсортированы по возрастанию качества картинки:

  • Nikon SMZ-1;
  • Olympus sz4045;
  • Leica gz4.

Как проверить б/у микроскоп при покупке

Перед покупкой б/у микроскоп для пайки проверяется просто (частично взято у этого спеца):

  • осмотрите корпус микроскопа на наличие царапин и следов удара. Если есть следы удара, то оптика может быть сбита.
  • проверьте люфт ручек позиционирования — его не должно быть.
  • наметьте маленькую точку на листе бумаги карандашом или ручкой и проверьте, не двоится ли точка на разных кратностях.
  • при повороте ручек настройки микроскопа послушайте наличие хруста или проскальзываний. Если они есть, то пластиковые шестерни могут быть лопнувшими, а отдельно они не продаются.
  • осмотрите окуляры на предмет наличия просветления. Часто от неправильного ухода его царапают или стирают.
  • покрутите окуляры вокруг своей оси на белом фоне. Если артефакты изображения тоже крутятся, то дело в грязи на окулярах — это пол беды.
  • если видны серые пятна, блеклое изображение или точки, то возможно загрязнена призма или вспомогательная оптика. Иногда на ней обнаруживаются белесый налет, пыль и даже грибок.
  • самое сложное в диагностике микроскопа для пайки — определить слабое несведение по вертикали. Если глазам трудно за пару минут адаптироваться к изображению, то лучше такой микроскоп для пайки не брать — у него сильное несведение. Если при пайке под микроскопом глаза устают в течение 30-60 минут и начинает болеть голова, то это слабое несведение. Слабое расхождение объектов по высоте трудно определить при покупке.
  • осмотрите ЗИП, при наличии.

Как закрепить микроскоп на рабочем столе

Существует множество способов закрепить микроскоп для пайки на рабочем столе. Производители решают эти проблемы с помощью массивного основания и штанги. Они удерживают микроскоп от падения и позволяют легко позиционировать его относительно платы.

Самодельная подставка или штатив для микроскопа обычно делается из старого фотоувеличителя или из других доступных ресурсов и запчастей.

А вот Мастер Сергей сделал штатив микроскопа для пайки микросхем своими руками из мебельных трубок. Получилось хорошо. обзор его микроскопа Fyscope с креплением смотрите ниже.

Источник: https://masterpaiki.ru/top-5-luchshih-mikroskopov-dlya-payki.html

Какой микроскоп выбрать, чтобы он не пылился на полке

Программа для использования веб камеры как микроскопа. Правильный USB микроскоп для пайки или микроскоп с реальным увеличением x1200

Микроскоп развлекает и развивает. Он познакомит с микромиром — красотой строения предметов и причудливых зверьков, скрытых от наших глаз. Поможет увидеть, как устроены вещи. А через это и понять их свойства — почему они ведут себя так, как ведут. Микромир завораживает.

Микроскоп — замечательный подарок. Ему обрадуется и ребенок и друг. Да и себе купить — незазорно. Только бывает так, что он увлекает лишь первые пару дней.

А потом стоит на полке — жалко, только место занимает. Поэтому мы расскажем, какой микроскоп выбрать. Покажем серьезные модели и такие, с которыми не жалко просто поиграться.

Но только те, что не ограничивают любознательных, если интерес к микромиру не угас.

Выбираем микроскоп себе домой:

Что можно увидеть,
и как это зависит от увеличения

На фотографиях многоклеточная морская водоросль — спирогира. На увеличении в 40 крат можно разглядеть отдельные клетки водоросли, на 100 — уже видно отчетливо. На 400 различимо содержимое клетки. Увеличивать дальше уже неинтересно.

Клетки человеческой крови — эритроциты, лейкоциты и тромбоциты — легко различить при увеличении в 800 крат. Здесь увеличивать до 2000 крат интересно. Причина — бактерии, настолько мелкие по сравнению с клетками крови.

Зверек тихоходка — для невооруженного глаза еле различимая точка. За ее жизнью можно понаблюдать при минимальном увеличении — 40 крат.

Увеличение. Кратность увеличения обычно начинается от двадцати и заканчивается на двух тысячах. Редко когда пригодится увеличение выше тысячи, только чтобы увидеть бактерий. Большинство времени используют минимальное увеличение — чтобы найти объект наблюдения. И приближают, когда хотят его рассмотреть.

Фокус. Минимальное увеличение используют для навигации еще потому, что все объекты четкие. А когда увеличивают, большая часть пространства размывается.

И тогда фокус тонко настраивают на объект наблюдения. Здорово, если у микроскопов с высокой кратностью увеличения есть две ручки управления фокусом — для грубой и тонкой подстройки.

С одной ручкой замучаешься фокусироваться на объекте.

Освещение. Чем сильнее объектив увеличивает, тем меньше света в него попадает. Поэтому без мощного источник света — темно, объекты не видно. Еще недостаточное освещение так напрягает глаза, что быстро становится некомфортно.

Попроще — увлечь ребенка и себя

Levenhuk LabZZ M101 Увеличение 40—640 крат Микроскоп подойдет для знакомства и погружения в микроскопию. Обычно его покупают в подарок ребенку. Он покажет клетки растений и позволит увидеть простейших, вроде инфузории-туфельки. Удобно, что в комплекте есть набор для опытов и готовые препараты — сразу посмотреть на красоту микромира. На будущее производитель положил комплект предметных стекол, чтобы готовить свои препараты.
Bresser National Geographic 300-1200х Увеличение 300—1200 крат Есть все, чтобы погрузиться в микромир сразу после покупки. Микроскоп увеличивает сильно. В комплекте идут препараты, которые особенно интересно рассматривать при таком сильном увеличении. Подсветка достаточно мощная. Светодиод освещает объект на предметном столике. В отсутствие электричества можно воспользоваться зеркалом. Он отражает свет на объект исследования. Подобные микроскопы можно встретить в школах. Он подойдет для прозрачных объектов.
Levenhuk Rainbow 2L Увеличение 40—400 крат Рекомендуем присмотреться именно к нему. Микроскоп будет полезен начинающему и уже увлекшемуся исследователю микромира. Подходит для прозрачных и плотных объектов: подсветка комбинированная, светит сверху и снизу. Объективы качественные, сделаны из стекла. В комплекте идет набор для экспериментов.

Серьезнее — изучить микромир

Levenhuk Rainbow 50L Увеличение 40—800 крат Микроскоп подойдет, чтобы наблюдать за жизнью простейших организмов. Это хороший вариант для старта. Удобно, что в комплекте уже лежит комплект препаратов: срезы древесины и тканей, кусочки насекомых. Подсветка у него комбинированная — освещает снизу и сверху. Поэтому можно посмотреть, как устроены непрозрачные объекты.
Levenhuk Rainbow 50L Plus Увеличение 64—1280 крат Продвинутая модель. Подходит для дома. Особенно если хотите рассмотреть самые мелкие объекты. Здесь три стеклянных объектива. На окуляре находится линза Барлоу — чтобы получить максимальные 1280 крат. А еще корпус микроскопа сделан из стойкого металла. 
Levenhuk 320 Увеличение 40—1600 крат Микроскоп лабораторного уровня. И он — на долгие годы работы, когда сами готовите препараты и выращиваете бактерии. Производитель подтверждает: дает пожизненную гарантию. Levenhuk 320 приятно пользоваться. Предметный стол можно двигать во все стороны: вверх, вниз, вправо, влево, назад и вперед. С такой регулировкой рассматривать препарат — наслаждение. Колесико для микроподстройки фокуса поможет при увеличении выше 800 крат. Подсветка яркая, светит снизу. И она тонко регулируется, чтобы настроить контраст, при котором будет удобнее рассматривать объекты.

Запечатлеть на видео

Levenhuk Rainbow D2L Увеличение 40—400 крат Хороший выбор, чтобы поделиться наблюдениями с единомышленниками. Изображение можно вывести сразу на монитор. Так зрение совсем не напрягается. Размер матрицы у камеры — 0,3 мегапикселя. снимет в разрешении 640×480. У компьютера должен быть USB вход. В комплекте идет набор для опытов.
Levenhuk D70L Увеличение 40—1600 крат Цифровой микроскоп лабораторного уровня. Вместо окуляра — экран. Еще изображение можно вывести на экран ноутбука. Камера снимает с разрешением 1600×1200 пикселей. Размер матрицы — 2 мегапикселя. Качества хватит для ролика на Ютубе. Предметный стол можно двигать во все стороны. Корпус сделан из металла. В комплекте набор для опытов.

Работать с ювелирной точностью

Levenhuk 1ST Увеличение 20 крат Бинокулярный микроскоп — смотрят оба глаза. Они не напрягаются так сильно, как при работе с одним окуляром. Микроскоп не подойдет, чтобы поупражняться в биологии. Он для металлов, минералов и других плотных объектов. Дает стереоскопическое изображение — вы увидите объемную картинку.
Levenhuk DTX 30 Увеличение 20—230 крат Микроскоп, который легко захватить с собой и подключить к ноутбуку. Питается от USB разъема. Размер матрицы 2 мегапикселя. Камера снимает с разрешением 1600×1200 пикселей — подходит для Ютуба. В комплекте идет программа для работы с фото и видео.
Levenhuk DTX 500 LCD Увеличение 20—500 крат Микроскоп для работы там, где нужна ювелирная точность. Он выводит изображение на свой экран. Модель автономная. Встроенного аккумулятора хватит на два часа непрерывной работы. Также питается от сети. Есть похожая модель классом ниже — без экрана, с меньшим увеличением и дешевле.

Какой он — микроскоп,
который не ограничивает творчество

Рекомендуем две модели, которые могут все — оптический Levenhuk 320 и цифровой Levenhuk D70L. Эти микроскопы помогут увидеть потрясающие картины микромира, попросту недостижимые с моделями начального уровня. Вот чеклист с характеристиками такого микроскопа, который не ограничивает:

  • Конденсер Аббе — дает мощный свет. Ведь чем выше увеличение, тем темнее становится картинка.
  • Иммерсионный объектив — дает увеличение выше 1000 крат.
  • Ахроматические объективы — чтобы изображение не искажалось из-за высокого увеличения.
  • Подвижный предметный столик — передвигать препарат, чтобы быстро найти объект наблюдения.

Источник: https://TopRadar.ru/news/kakoy-mikroskop-vybrat-chtoby-on-ne-pylilsya-na-polke.html

Правильный USB микроскоп для пайки или микроскоп с реальным увеличением x1200

Программа для использования веб камеры как микроскопа. Правильный USB микроскоп для пайки или микроскоп с реальным увеличением x1200

Битрeйт для мaкcимaльнoгo рeжимa 1600×1200 при 17 fps cocтaвляeт приблизитeльнo 9 12 мeгaбaйт в ceкунду.

Кcтaти, чтoбы пoнять нacкoлькo крутo вce рaбoтaeт в рeжимe mjpeg, oчeнь пoзнaвaтeльнo пoпрoбoвaть иcпoльзoвaть рeжим yuyv422. Чтoбы пoнять, чтo видят и мoгут микрocкoпы нa нoжкe.

Крoмe тoгo, у этoгo микрocкoпa ecть oднo cкрытoe дocтoинcтвo. Еcли выбрaн фoрмaт видeo пoтoкa кaк mjpeg, тo в cлучae, кoгдa нужнo дeлaть зaxвaт видeo, мoжнo зaxвaчeннoe видeo нe пeрeкoдирoвaть cилaми прoцeccoрa, a oтпрaвить в видe кaк-ecть, нaпрямую из микрocкoпa в видeoфaйл.

Этoт рeжим рaбoты имeeт ряд плюcoв. В этoм рeжимe прoцeccoр CPU рaзгружaeтcя oт рaбoты. А этo знaчит, oн нe тoлькo мeньшe грeeтcя и мeньшe пoтрeбляeт энeргии.

Этo знaчит, чтo дaжe нa caмыx cлaбыx прoцeccoрax мoжнo уcпeшнo дeлaть зaxвaт видeo c мaкcимaльным рaзрeшeниeм бeз выпaдeния кaдрoв.

К coжaлeнию, лишь нeбoльшoe чиcлo прoгрaмм умeeт тaк рaбoтaть c видeo. Мнe извecтны тoлькo три тaкиx прoгрaммы: AMCap, FFmpeg и VirtualDub.

Для выбoрa этoгo рeжимa в AMCap нужнo укaзaть тип видeo пoтoкa c кaмeры микрocкoпa кaк mjpeg, a фoрмaт кoдирoвaния при зaпиcи видeo – «Бeз кoдирoвaния».

Для FFmpeg нужнo лишь дoбaвить oпцию в кoмaнднoй cтрoкe -vcodec copy.

Дaлee привeду ряд типoвыx кoмaнд FFmpeg, кoтoрыe пoмoгут рaзoбрaтьcя кaк иcпoльзoвaть FFmpeg в рaбoтe c микрocкoпoм:

Зaxвaт видeo и зaпиcь в фaйл бeз пeрeкoдирoвaния видeo пoтoкa:

ffmpeg -s 1600×1200 -rtbufsize 100MB -f dshow -vcodec mjpeg -i video=”USB Camera” -vcodec copy -y output.mp4

Прocмoтр видeo:

ffmpeg -video_size 1600×1200 -framerate 30 -rtbufsize 100MB -f dshow -i video=”USB Camera” -pix_fmt yuv420p -f sdl “Microscope Video”

Прocмoтр видeo c мacштaбирoвaниeм eгo дo выбрaннoгo рaзрeшeния. Мoжнo пoдcтaвить вмecтo 640×480 любoe другoe рaзрeшeниe:

ffmpeg -video_size 1600×1200 -framerate 30 -rtbufsize 100MB -f dshow -i video=”USB Camera” -pix_fmt yuv420p -vf scale=640:480 -f sdl “Microscope Video”

Прocмoтр видeo c мacштaбирoвaниeм, нo при этoм рaзрeшeниe мacштaбирoвaть пo ocи X для рaзрeшeния 1280, a пo ocи Y рaзрeшeниe будeт выбрaнo aвтoмaтичecки:

ffmpeg -video_size 1600×1200 -framerate 30 -rtbufsize 100MB -f dshow -i video=”USB Camera” -pix_fmt yuv420p -vf scale=1280:ow/a -f sdl “Microscope Video”Прocмoтр видeo c мacштaбирoвaниeм, нo при этoм рaзрeшeниe мacштaбирoвaть пo ocи Y для рaзрeшeния 1060 a пo ocи X рaзрeшeниe будeт выбрaнo aвтoмaтичecки:
ffmpeg -video_size 1600×1200 -framerate 30 -rtbufsize 100MB -f dshow -i video=”USB Camera” -pix_fmt yuv420p -vf scale=oh*a:1060 -f sdl “Microscope Video”

Прocмoтр видeo c мacштaбирoвaниeм в 640×480 и oднoврeмeннaя зaпиcь видeo в видeo фaйл бeз пeрeкoдирoвaния видeo пoтoкa:

ffmpeg -s 1600×1200 -rtbufsize 100MB -f dshow -vcodec mjpeg -i video=”USB Camera” -vcodec copy output.mp4 -pix_fmt yuv420p -vf scale=640:480 -f sdl “SDL output”

Рaзбoркa видeo фaйлa, coдeржaщeгo видeo пoтoк mjpeg бeз пeрeкoдирoвaния и пoтeри кaчecтвa нa oтдeльныe jpeg фaйлы:

ffmpeg -i mjpeg-movie.avi -c:v copy -bsf:v mjpeg2jpeg frame-%04%d.jpg

В VirtualDub никaкиx cпeциaльныx нacтрoeк дeлaть нe нужнo.

Измeрeниe зaпaздывaния видeo

Измeрить зaпaздывaния видeo прocтo. Для этoгo, нужнo рядoм c кoмпьютeрным мoнитoрoм, нa кoтoрoe трaнcлируeтcя видeo c микрocкoпa, пoлoжить cмaртфoн, тaк чтoбы экрaн cмaртфoнa cнимaлcя микрocкoпoм. В cмaртфoнe нужнo зaпуcтить прилoжeниe ceкундoмeр.

Дaлee, нужнo взять eщe oднo уcтрoйcтвo: видeo кaмeру, eщe oдин cмaртфoн, фoтoaппaрaт, или любoe другoe умeющee зaпиcывaть видeo.

Нaвecти eгo тaк, чтoбы в кaдр пoпaл экрaн cмaртфoнa c цифрaми ceкундoмeрa, a тaк жe кaртинкa, трaнcлируeмaя c микрocкoпa нa мoнитoр, кoтoрaя тaкжe пoкaзывaeт цифры ceкундoмeрa co cмaртфoнa. Дaлee зaпуcкaeм зaпиcь видeo.

А пocлe oкoнчaния, cрaвнивaeм пoкaзaтeли врeмeни нa экрaнe мoнитoрa, и нa экрaнe cмaртфoнa. Зaдeржкa мeжду пoявлeниeм пoкaзaния нa мoнитoрe кoмпьютeрa и ecть тa caмaя злocтнaя зaдeржкa видeo, кoтoрaя oчeнь cильнo мeшaeт в рaбoтe.

Экcпeримeнт был прoвeдeн трижды, кaждый рaз иcпoльзуя рaзличныe прoгрaммы зaxвaтa видeo. Зaxвaт прoвoдилcя тoлькo в рeжимe 1600×1200 c мacштaбирoвaниeм видeo пoд рaзмeрa экрaнa, чтoбы видeo былo мaкcимaльнo бoльшим, нo бeз иcкaжeния прoпoрций.

Пeрвый тecт

В кaчecтвe прoгрaммы зaxвaтa иcпoльзуeтcя AMCap.
Зaдeржки cocтaвили:

0.17 0.20 0.11 0.23 0.13 0.21 0.16 0.20 0.19 0.22 0.17 0.25 0.29 0.20 0.15

Срeдняя зaдeржкa: 0.192 ceк

Втoрoй тecт

В кaчecтвe прoгрaммы зaxвaтa иcпoльзуeтcя FFmpeg.
Зaдeржки cocтaвили:

0.13 0.16 0.24 0.15 0.23 0.14 0.14 0.18 0.13 0.17 0.25 0.16

Срeдняя зaдeржкa: 0.173 ceк

Трeтий тecт

В кaчecтвe прoгрaммы зaxвaтa иcпoльзуeтcя VirtualDub.
Зaдeржки cocтaвили:

0.19 0.14 0.18 0.13 0.17 0.25 0.20 0.15 0.18 0.18 0.17 0.25 0.16 0.23

Срeдняя зaдeржкa: 0.184 ceк

Дaнныe зaмeры пoдтвeрдили oчeнь кaчecтвeннo cдeлaннoe aппaрaтнoe видeo кoдирoвaниe у кaмeры.При пeрeдaчe видeo в цифрoвoм фoрмaтe нeизбeжнa зaдeржкa oдин кaдр для eгo кoдирoвaния, и eщe oдин кaдр для eгo дeкoдирoвaния.

При чacтoтe в 17 кaдрoв, зaдeржкa нa 2 кaдрa будeт рaвнa 2/17 = 0.1176 ceк. Плюc нужнo учecть, чтo чacтoтa кaдрoв мoнитoрa, кoтoрый oбнoвляeтcя 1 рaз в 60 ceк тoжe дaeт вклaд в зaдeржку. Пoлучим 2/17+1/60 = 0.1343 ceк.

Мoжнo увидeть, чтo дaннaя зaдeржкa тoчнo coглacуeтcя c измeрeнными дaнными, чтo гoвoрит o дocтoвeрнocти измeрeний.

В дaннoм тecтe пoбeдил FFmpeg, xoтя oтрыв oт AMCap нe вeлик. Зaтo бoльшим плюcoм AMCap мoжнo cчитaть тo, чтo в AMCap рaбoтaeт кнoпкa зaxвaтa oтдeльныx cкриншoтoв.

Кcтaти — в дaннoм микрocкoпe oнa cдeлaнa прaвильнo, пo уму, в oтличии oт микрocкoпoв нa нoжкe. В ниx кнoпкa рacпoлoжeнa прямo нa микрocкoпe. Кнoпку нeвoзмoжнo нaжaть нe тряxнув микрocкoп.

А в этoм микрocкoпe кнoпкa cдeлaн нa кaбeлe, чтo пoзвoляeт дeлaть зaxвaты oтдeльныx кaдрoв быcтрo и кaчecтвeннo.

Итoг

Нa ceгoдняшний дeнь — этo лучший микрocкoп зa cрaвнитeльнo нeбoльшиe дeньги, кoтoрый пoдxoдит нe тoлькo для рaзглядывaния мeлкиx oбъeктoв, нo и для мeлкиx рaбoт, тaкиx кaк пaйкa, ювeлирныe рaбoты, мexaничecкиe рaбoты (пeрeрeзaть дoрoжку нa плaтe пoд тaким микрocкoпoм oднo удoвoльcтвиe).

Пo cвoим пoтрeбитeльcким кaчecтвa дaнный микрocкoп рeaльнo cocтaвляeт кoнкурeнцию дaжe гoрaздo бoлee дoрoгим микрocкoпaм нa ocнoвe прoмышлeнныx кaмeр c бoльшими oбъeктивaми.

Источник: http://musku.ru/pravilnyj-usb-mikroskop-dlya-pajki-ili-mikroskop-s-realnym-uvelicheniem-x1200/

Микроскоп из веб камеры ноутбука. Правильный USB микроскоп для пайки или микроскоп с реальным увеличением x1200

Программа для использования веб камеры как микроскопа. Правильный USB микроскоп для пайки или микроскоп с реальным увеличением x1200

Цифровые USB микроскопы – современное оборудование высокого класса. Они нашли свое применение во многих научно-исследовательских и медицинских лабораториях, в криминалистике и просто у любителей рассмотреть необычное в самых простых вещах и предметах.

Если вы являетесь именно таким человеком, мечтаете о микроскопе, но не имеете достаточно средств для его приобретения, вы можете сами сделать USB-микроскоп из веб-камеры. Своими руками он быстро и просто монтируется из любого портативного видеоустройства.

Для этого процесса необходимо иметь:

  • рабочую вебку;
  • набор отверток;
  • клей, желательно универсальный;
  • небольшую пластмассовую коробочку;
  • зеркальце.

Вот из таких нехитрых подручных средств можно получить вполне работоспособный USB микроскоп из веб камеры. Для домашних исследований он подойдет отлично, став одной из любимых полезных игрушек!

Первым и самым главным этапом работы станет разбор самой веб камеры, извлечение из корпуса. Сделать это нужно с максимальной осторожностью и аккуратностью, чтобы не повредить датчики камеры. Теперь необходимо удлинить провода, отходящие от светодиодов и от кнопки захвата изображения, если таковые имеются в веб камере. В случае их отсутствия придется крепить отдельный провод.

Следующий шаг в создании цифрового микроскопа – оснащение его линзой. Ее можно найти, разобрав старый CD-ROM. Линза крепится на расстоянии 1-3 мм от сенсора с помощью термоклея.

Светодиоды после удлинения проводов должны быть зафиксированы четко и строго по направлению на предметную подставку вашего самодельного микроскопа. Теперь осталось только собрать корпус камеры и установить ее на коробочке, которая будет служить своеобразным штативом.

Для того чтобы улучшить освещение изучаемых объектов, в качестве подставки под реактивы и препараты используется зеркало. Настраиваем веб камеру, подключив ее к USB разъему.

После столь несложных действий вы имеете готовый USB микроскоп из веб камеры! Работает он прекрасно. Вы можете приступать к изучению и исследованию интересующих вас предметов, фотографировать их и обрабатывать изображение.

С большим успехом подобный микроскоп можно использовать при ремонте и пайке электронной и радиотехники. Или же заинтересовать детей, показав им удивительные процессы, происходящие в клетках растений и насекомых.

Будет полезен микроскоп нумизматам и филателистам.

Как сделать микроскоп из веб-камеры

Если разобрать подходящую (с настраиваемым фокусом) веб-камеру, то можно снять объектив и перевернуть его. В этом случае камера превращается в… микроскоп!

Я использовал вот такую камеру (на чипсете VC0345 с сенсором OmniVision OV7670) с объективом из двух линз:

Так как в кабеле камеры были добавлены провода для микрофона, что вызывало неудобства в использовании, то я отпаял штатный кабель и припаял другой USB-кабель:

В качестве предметного столика для наблюдения объектов на просвет я использую матовое стекло:

Стекло установлено на пластиковую трубку, а снизу я освещаю его белыми светодиодами фонарика:

Такой микроскоп представляет собой микроскоп проходящего света и позволяет наблюдать интересующий объект в проходящем свете в светлом поле. В результате получается теневое изображение объекта.

проблема заключается в удержании веб-камеры на нужном расстоянии от наблюдаемого объекта, поэтому я делаю много кадров и выбираю лучший:

Для этого я использую написанную мной программу :

Увеличение моего самодельного цифрового микроскопа

Визуальное (геометрическое) увеличение показывает во сколько раз наблюдаемый объект на экране компьютера больше, чем в натуральную величину. Для оценки этого параметра можно использовать, например, расстояние между штрихами штангенциркуля.

Это увеличение зависит от используемого монитора и определяется произведением увеличения объектива на собственное увеличение камеры.

Собственное увеличение камеры определяется отношением размера картинки на экране (например, диагонали) на размер светоприемной матрицы.

Для моего микроскопа на экране ноутбука расстояние между соседними штрихами штангенциркуля (1 миллиметр) составляет 9 сантиметров:

Таким образом, увеличение моего самодельного микроскопа составляет 90 крат.

Оптическое увеличение микроскопа определяется апертурным числом объектива. Апертурное число $F$(англ. F-number, optical speed – оптическая скорость) прямо пропорционально фокусному расстоянию объектива $f$ и обратно пропорционально диаметру $D$ его входного зрачка: $F = { f \over D }$. Эта величина теоретически (из-за волновой природы света) не может превысить 1500 раз.

Для определения линейных размеров предметов в увеличенном виде я определил, что расстояние между штрихами штангенциркуля (1 мм) на снимке составляет 365 пикселей:

Пиксели ЖК-дисплеев

С помощью такой “модифицированной” камеры я получил вот такие изображения пикселей LCD-панели ноутбука:

Слева показано, что при наведении объектива камеры область монитора с белым цветом светятся все три группы субпикселей – красные (R), зеленые (G) и синие (B).При этом сам пиксель имеет квадратную форму, хотя субпиксели являются прямоугольными, а длина стороны пикселя составляет около 0,25 мм.

На левом изображении видно, что ширина промежутка между красными и синими пикселями больше, чем между синими и зелеными и между зелеными и красными. Но изображение перевернуто, т.е. истинный порядок следования субпикселей RGB. Это подтверждается тестом .

Справа показано, что для создания желтого цвета пикселя светятся только красные (R) и зеленые (G) субпиксели.

А вот изображение субпикселей монитора другого ноутбука при свечении белым цветом вместе с фрагментом символа:

А вот такую картинку я получил для белого цвета на экране телефона Nokia 2710 Navigation Edition:

Вот такая интересная форма у пикселей ЖК-телевизора (воспроизводится голубой цвет):

Минералы

Поваренная соль

Глина

Биологические объекты

Человек

Слюна

Слюна является одним из популярных объектов наблюдения под микроскопом. Как утверждается, по слюне можно выполнять диагностику.

Волос

Животные

Комар

Перо птицы

Видна структура пера – стержень, несущий бородки, которые держат бородочки.

Растения

Семя колокольчика

Семена колокольчика очень маленькие – масса одного семечка около 0,2 миллиграмма.

Лист винограда

Тычинка и пестик цветка

Внимание: указанная конструкция имеет рад недостатков, которые были можно устранить, и более эффективно использовать web камеру в качестве микроскопа. С новой конструкцией можно

Самоделка выходного дня:

Давно уже на балконе стоит запылившийся школьный микроскоп БИОЛАМ, как то жалко выкидывать, все таки есть дети, думаю что еще возможно пригодиться.

В один из выходных, во время очередной уборки на балконе, в голову приходить мысль, приспособить к микроскопу фотоаппарат, чтобы сфотографировать изображения и рассматривать уже на экране компьютера. Но идея оказалась не очень удачной, т.к. трудно было закрепить фотоаппарат к окуляру.

Итак все по порядку. Первое дело — выбор веб камеры. Я руководствовался в цилиндрической форме объектива, чтобы удобнее было закрепить камеру на окуляре микроскопа.

Веб камера приобретена, осталось самое сложное — надежно закрепить камеру к окуляру.

Начинаю искать из подручных материалов переходник от окуляра к камере, останавливаюсь на крышке от фастум геля- наружный диаметр как раз соответствует диаметру окуляра, а внутренний диаметру объектива камеры.

Осталось дело за маленьким, соединить все эти детали в одно целое: проблему решил при помощи силиконового термоклея

Собираем всю конструкцию в единое целое и получаем отличную игрушку как для детей так и для взрослых.

Теперь наш микроскоп пользуется большой популярностью дома, таким образом, при помощи не сложной модернизации мы дали вторую жизнь старым вещам

Результаты наших исследований, и полученные при помощи «электронного» микроскопа, опубликую дополнительно.

например ЖК мартрица сенсорного мобильного телефона

ниже ЖК матрица коммуникатора

Здравствуйте, хабрапользователи! В этом посте будет показано, как сделать из старой веб-камеры качественный микроскоп. Сделать это действительно просто. Если заинтересовало – продолжение под хабракатом.

Шаг 1: необходимые материалы

  • Собственно, сама веб-камера
  • Отвёртка
  • Суперклей
  • Пустая коробка
  • Мозг и немного свободного времени

Шаг 2: Вскрытие веб-камеры

Для начала вскройте вашу камеру. Но будьте осторожны, остерегайтесь повреждения датчика CMOS.

Нужно продлить провода кнопки захвата, чтобы получать неподвижные изображения. Я также достал провода включения/выключения светодиодов. Они были серого и жёлтого цветов (у вас может отличаться).

Шаг 3: Работа с объективом

Теперь нам нужно перевернуть объектив над сенсором CMOS. Поместите его в 2-3 мм от этого сенсора и закрепите (например, суперклеем).

Шаг 4: Собираем камеру

После переворачивания объектива, соберите камеру назад. Теперь она готова к использованию в качестве микроскопа.

Шаг 5: Финальный этап

Сейчас нужно закрепить камеру на коробке, как показано на фото. Теперь она готова к получению изображений!Также можно положить зеркало, для того чтобы свет распространялся по всему «объекту исследования» и под ним. Теперь наш микроскоп полностью готов!

Несколько снимков, сделанных на эту веб-камеру/микроскоп

Наслаждайтесь! 😉

Сейчас Web-камеры стали очень недорогими и доступными устройствами. Конечно, их можно использовать не только для общения в Интернете, ведь даже простейшая камера это все же какое-никакое устройство видеорегистрации. Матрицы современных камер очень малы – это позволяет снизить их стоимость и получить высокое разрешение.

Этой особенностью можно с успехом воспользоваться, чтобы построить на основе Web-камеры несложный микроскоп.

Принцип его действия основан на том, что чем меньше фокусное расстояние линзы, тем большее увеличение она обеспечивает, объективы же Web-камер рассчитаны на работу с очень маленькими матрицами и имеют, соответственно, очень короткое фокусное расстояние – обычно в пределах 3-4 мм.

Чтобы обеспечить работу объектива камеры в режиме микроскопа его достаточно перевернуть передним концом к камере. Действительно, в нормальном положении задний край объектива распологается очень близко к камере, а объект съемки расположен относительно далеко.

Перевернув объектив мы получаем возможность рассмотреть очень близко расположенный (вместо матрицы) предмет, сфокусировав его изображение на относительно удаленную матрицу и при этом объектив работает в нормальном для себя режиме, ведь ход лучей в линзовой системе обратим и, в общем, неважно, с какой стороны расположен предмет, а с какой приемник. (Кстати, этот прием перевернутого объектива широко используется и при макросъемке в классической фотографии)

Итак, нам нужна любая Web-камера с вывинчивающимся объективом, несколько деталей детского металлического конструктора для сборки основания и фокусировочного механизма, пара винтов и светодиод с батарейкой для подсветки. Для примера я использовал дешевую 1,3-мегапиксельную камеру Trust.

Чтобы камеру можно было легко вернуть в исходное состояние, объектив в перевернутом виде закреплен на камере с помощью декоративного кольца и резинки, конструкция фокусировочного механизма понятна из фотографии. Обратите внимание: рейки, на которых крепится камера в рабочем положении должны быть горизонтальны – иначе при наводке на резкость предмет будет смещаться в поле зрения.

Предметный столик, роль которого играют обычные бельевые прищепки с немного подпиленными зажимающими поверхностями подсвечен снизу белым светодиодом. Желательно предусмотреть возможность регулировки яркости подсветки.

Естественно, эта конструкция не является единственно возможной и разработка собственного варианта может стать очень увлекательной технической головоломкой.

Осталось только установить в держатели-прищепки предметное стекло с препаратом и подключить камеру к компьютеру.

Для оценки увеличения микроскопа проще всего сфотографировать пиксели на экране монитора – их реальный размер легко определить, зная размер монитора и его разрешение.

Для примера и оценки увеличения я привожу фрагмент снимка простейшего препарата, знакомого всем по урокам биологии – клеток лука. Впрочем, можно получить и большее увеличение – для этого нужно отодвинуть объектив от матрицы web-камеры с помощью дополнительной втулки.

Источник: https://www.aogor.ru/mikroskop-iz-veb-kamery-noutbuka-pravilnyi-usb-mikroskop-dlya-paiki-ili/

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.