Слуховой анализатор особености строения и функции. Строение и функции слухового анализатора

Содержание

5.5.1 Органы чувств (анализаторы). Строение и функции органов зрения и слуха

Слуховой анализатор особености строения и функции. Строение и функции слухового анализатора

Анализатор — функциональная система, состоящая из:

– рецептора,

– чувствительного проводящего пути

– соответствующей зоны коры, куда проецируется данный вид чувствительности.

Анализ и синтез полученной информации осуществляются в строго определенном участке — зоне коры больших полушарий.

По особенностям клеточного состава и строения кору больших полушарий разделяют на ряд участков, называемых корковыми полями. Функции отдельных участков коры неодинаковы. Каждому рецепторному аппарату на периферии соответствует область в коре — корковое ядро анализатора.

       Важнейшиезоны коры следующие:

      • Двигательная зона расположена в переднецентральной и заднецентральной областях коры (передней центральной извилине впереди центральной борозды лобной доли).

       • Чувствительная зона (зона кожно-мышечной чувствительности расположена позади центральной борозды, в задней центральной извилине теменной доли). Наибольшую площадь занимает корковое представительство рецепторов кисти и большого пальца руки, ого аппарата и лица, наименьшую — представительство туловища, бедра и голени.

       • Зрительная зона сосредоточена в затылочной доле коры. В нее поступают импульсы от сетчатки глаза, она осуществляет различение зрительных раздражений.

       • Слуховая зона расположена в верхней височной извилине височной доли.

       • Обонятельная и вкусовая зоны — в переднем отделе (на внутренней поверхности) височной доли каждого полушария.

В нашем сознании деятельность анализаторов отражает внешний материальный мир. Это дает возможность приспосабливаться к условиям среды путем изменения поведения.

Деятельность коры головного мозга человека и высших животных определена И.П. Павловым как высшая нервная деятельность, представляющая собой условно-рефлекторную функцию коры головного мозга.

Анализаторы  – совокупность нервных образований, обеспечивающих осознание и оценку, действующих на организм, раздражителей. Анализатор состоит из воспринимающих раздражение рецепторов, проводящей части и центральной части – определенной области коры головного мозга, где формируются ощущения.

Зрительный анализатор  обеспечивает получение зрительной информации из окружающей среды и  состоит из трех частей:

Глаз  состоит из глазного яблока и вспомогательного аппарата, к которому относятся веки, ресницы, слезные железы и мышцы глазного яблока

фиброзную, задний отдел которой образован непрозрачной белочной  оболочкой (склерой),

сосудистую 

сетчатую

Часть сосудистой оболочки, снабженная пигментами, называется радужной оболочкой.                              

В центре радужной оболочки находится зрачок, который может изменять диаметр своего отверстия за счет сокращения глазных мышц.

Задняя часть сетчатки воспринимает  световые раздражения. Передняя ее часть – слепая и не содержит светочувствительных элементов. Светочувствительными элементами сетчатки являются:

палочки  (обеспечивают зрение в сумерках и темноте)

колбочки  (рецепторы цветового зрения, работающие при высокой освещенности).

Колбочки расположены ближе к центру сетчатки (желтое пятно), а палочки концентрируются на ее периферии. Место выхода зрительного нерва называется слепым пятном.

Полость глазного яблока заполнена стекловидным телом.

Хрусталик имеет форму двояковыпуклой линзы. Он способен изменять свою кривизну при сокращениях ресничной мышцы. При рассматривании близких предметов хрусталик сжимается, при рассматривании отдаленных – расширяется. Такая способность хрусталика называется аккомодацией.

Между роговицей и радужкой находится передняя камера глаза, между радужкой и хрусталиком – задняя камера. Обе камеры заполнены прозрачной жидкостью.

Лучи света, отражаясь от предметов, проходят через роговицу, влажные камеры, хрусталик, стекловидное тело и, благодаря преломлению в хрусталике, попадают на желтое пятно  сетчатки – место наилучшего видения. При этом возникает действительное, обратное, уменьшенное изображение предмета.

От сетчатки по зрительному нерву импульсы поступают в центральную часть анализатора – зрительную зону коры мозга, расположенную в затылочной доле. В коре информация, полученная от рецепторов сетчатки, перерабатывается и человек воспринимает естественное отражение объекта.

Нормальное зрительное восприятие обусловлено:

– достаточным световым потоком;

– фокусированием изображения на сетчатке (фокусирование перед сетчаткой означает близорукость, а за сетчаткой – дальнозоркость);

– осуществлением аккомодационного рефлекса.

Важнейшим показателем зрения является его острота, т.е. предельная способность глаза различать мелкие объекты.

Аккомодация приспособление глаза к видению различно удаленных предметов. При аккомодации сокращаются мышцы, которые изменяют кривизну хрусталика. При постоянной избыточной кривизне хрусталика световые лучи преломляются перед сетчаткой и в результате возникает близорукость.

Если же кривизна хрусталика недостаточна, то световые лучи фокусируются за сетчаткой и возникает дальнозоркость. Близорукость развивается при увеличенной продольной оси глаза.

Параллельные лучи, идущие от далеких предметов, собираются (фокусируются) впереди сетчатки, на которую попадают расходящиеся лучи и в результате получается расплывчатое изображение.

При близорукости назначают очки с рассеивающими двояковогнутыми стеклами, уменьшающими преломление лучей настолько, что изображение предметов возникает на сетчатке. Дальнозоркость наблюдается при укороченной оси глазного яблока. Изображение фокусируется позади сетчатки.

Для исправления зрения требуются двояковыпуклые стекла. Старческая дальнозоркость развивается обычно после 40 лет, когда хрусталик теряет эластичность, твердеет и утрачивает способность менять кривизну, что мешает четко видеть на близком расстоянии. Глаз утрачивает способность к ясному видению разноудаленных предметов.

Орган слуха и равновесия.

Слуховой анализатор  обеспечивает восприятие звуковой информации и ее обработку в центральных отделах коры головного мозга.

Периферическую часть анализатора образуют: внутренне ухо и слуховой нерв.

Центральная часть образована подкорковыми центрами среднего и промежуточного мозга и височной зоной коры.

Ухо  – парный орган, состоящий из:

Наружного уха – включает ушную раковину, наружный слуховой проход и барабанную перепонку.

Среднего уха –  состоит из барабанной полости, цепочки слуховых косточек и слуховой (евстахиевой) трубы. Слуховая труба связывает барабанную полость с полостью носоглотки. Это обеспечивает выравнивание давления по обеим сторонам барабанной перепонки.

Слуховые косточки – молоточек, наковальня и стремечко связывают барабанную перепонку с перепонкой овального окна, ведущего в улитку.

Среднее ухо обеспечивает передачу звуковых волн из среды с низкой плотностью (воздух) в среду с высокой плотностью (эндолимфу), в которой находятся рецепторные клетки внутреннего уха.

Внутреннего уха –  расположено в толще височной кости и состоит из костного и расположенного в нем перепончатого лабиринта. Пространство между ними заполнено перилимфой, а полость перепончатого лабиринта – эндолимфой. В костном лабиринте различают три отдела – преддверие, улитку и полукружные каналы.

     К органу слуха относится улитка – спиральный канал в 2,5 оборота. Полость улитки разделена перепончатой основной мембраной, состоящей из волоконец разной длины. На основной мембране находятся рецепторные волосковые клетки. Колебания барабанной перепонки передаются слуховым косточкам.

Они усиливают эти колебания почти в 50 раз и через овальное окошко передаются в жидкость улитки, где воспринимаются волоконцами основной мембраны. Рецепторные клетки улитки воспринимают раздражение, поступающее от волоконец и по слуховому нерву передают его в височную зону коры головного мозга.

Ухо человека воспринимает звуки частотой от 16 до 20 000 Гц.

Орган равновесия  или вестибулярный аппарат  образован двумя мешочками , заполненными жидкостью, и тремя полукружными каналами. Рецепторные волосковые клетки  расположены на дне и внутренней стороне мешочков.

К ним примыкает мембрана с кристаллами – отолитами, содержащими ионы кальция. Полукружные каналы расположены в трех взаимно перпендикулярных плоскостях. В основаниях каналов находятся волосковые клетки. Рецепторы отолитового аппарата реагируют на ускорение или замедление прямолинейного движения.

Рецепторы полукружных каналов раздражаются при изменениях вращательных движений. Импульсы от вестибулярного аппарата по вестибулярному нерву поступают в ЦНС. Сюда же поступают импульсы от рецепторов мышц, сухожилий, подошв.

Функционально вестибулярный аппарат связан с мозжечком, отвечающим за координацию движений, ориентацию человека в пространстве.

Вкусовой анализатор  состоит из рецепторов, расположенных во вкусовых почках языка, нерва, проводящего импульс в центральный отдел анализатора, который находится на внутренних поверхностях височной и лобной долей.

Обонятельный анализатор  представлен обонятельными рецепторами, находящимися в слизистой оболочке носа. По обонятельному нерву сигнал от рецепторов поступает в обонятельную зону коры головного мозга, находящуюся рядом со вкусовой зоной.

Кожный анализатор  состоит из рецепторов, воспринимающих давление, боль, температуру, прикосновение, проводящих путей и зоны кожной чувствительности, расположенной в задней центральной извилине.

Тематические задания

А1. Анализатор

1) воспринимает и перерабатывает информацию

2) проводит сигнал от рецептора в кору полушарий

3) только воспринимает информацию

4) только передает информацию по рефлекторной дуге

А2. Сколько звеньев в анализаторе

1) 2             

2) 3             

3) 4             

4) 5

А3. Размеры и форма предмета анализируются в

1) височной доле мозга         

3) затылочной доле мозга

2) лобной доле мозга             

4) теменной доле мозга

А4. Высота звука распознается в

1) височной доле коры          

3) затылочной доле

2) лобной доле                       

4) теменной доле

А5. Воспринимающим световое раздражение органом является

1) зрачок 

2) хрусталик 

3) сетчатка 

4) роговица

А6. Воспринимающим звуковые раздражения органом является

1) улитка 

2) евстахиева труба 

3) слуховые косточки 

4) овальное окошко

А7. Максимально усиливает звуки

1) наружный слуховой проход      

2) ушная раковина

3) жидкость улитки                         

4) комплект слуховых косточек

А8. При возникновении изображения перед сетчаткой возникает

1) куриная слепота 

2) дальнозоркость 

3) близорукость 

4) дальтонизм

А9. Деятельность вестибулярного аппарата регулируется

1) вегетативной нервной системой

2) зрительной и слуховой зонами

3) ядрами продолговатого мозга

4) мозжечком и двигательной зоной коры мозга

А10. Укол, ожог анализируются в

1) лобной доле головного мозга    

2) затылочной доле мозга

3) передней центральной извилине

4) задней центральной извилине

В1. Выберите отделы анализаторов, в которых воспринимается раздражение

1) поверхность кожи       

2) улитка                         

3) слуховой нерв

4) зрительная зона коры

5) вкусовые почки языка

6) барабанная перепонка

Источник: https://biology100.ru/index.php/materialy-dlya-podgotovki/chelovek-i-ego-zdorove/5-5-1-organy-chuvstv-analizatory-stroenie-i-funktsii-organov-zreniya-i-slukha

Как устроен слуховой анализатор

Слуховой анализатор особености строения и функции. Строение и функции слухового анализатора

Слуховой анализатор включает в себя три основные части: орган слуха, слуховые нервы, подкорковый и корковые центры мозга. Как работает слуховой анализатор, знают не многие, но сегодня мы вместе попробуем разобраться во всем.

Человек узнает окружающий его мир и адаптируется в социуме благодаря органам чувств. Одними из самых важных являются органы слуха, которые улавливают звуковые колебания и предоставляют человеку информацию о происходящем вокруг него. Совокупность систем и органов, что обеспечивают чувство слуха, называют слуховым анализатором. Давайте рассмотрим устройство органа слуха и равновесия.

Строение слухового анализатора

Функции слухового анализатора, как уже выше упоминалось, воспринимать звук и давать информацию человеку, но при всей, на первый взгляд, простоте, это довольно сложная процедура.Для того чтобы лучше разобраться, как работают отделы слухового анализатора в организме человека, требуется досконально понять, что же такое собой представляет внутренняя анатомия слухового анализатора.

Слуховой анализатор включает в себя:

  • рецепторный (периферический) аппарат – это наружное, среднее и внутреннее ухо;
  • проводниковый (средний) аппарат – слуховой нерв;
  • центральный (корковый) аппарат – слуховые центры в височных долях больших полушарий.

Органы слуха у детей и у взрослых идентичны, они включают рецепторы слухового аппарата трех видов:

  • рецепторы, которые воспринимают колебания волн воздуха;
  • рецепторы, что дают человеку понятие о местоположении тела;
  • рецепторные центры, что позволяют воспринимать скорость движения и его направления.

Орган слуха каждого человека состоит из 3 частей, рассматривая детальней каждую из них, можно понять, как человек воспринимает звуки. Итак, наружное ухо — это совокупность ушной раковины и слухового прохода. Раковина являет собой полость из упругого хряща, что покрыта тонким слоем кожи.

Внешнее ухо представляет некий усилитель для преобразования звуковых колебаний. Ушные раковины расположены с обеих сторон человеческой головы и роли не играют, так как просто собирают звуковые волны.

Ушные раковины неподвижны, и даже если отсутствует их внешняя часть, то особого вреда строение слухового анализатора человека не получит.

Рассматривая строение и функции наружного слухового прохода, можно сказать, что он представляет собой небольшой канал длиною 2,5 см, который выстлан кожей с мелкими волосками.

В канале присутствуют апокриновые железы, способные вырабатывать ушную серу, которая вместе с волосками позволяет защитить следующие отделы уха от запыления, загрязнения и попадания посторонних частиц.

Наружная часть уха помогает только собирать звуки и проводить их в центральный отдел слухового анализатора.

Барабанная перепонка имеет вид небольшого овала диаметром 10 мм, через нее проходит звуковая волна во внутреннее ухо, где создает некие колебания в жидкости, что наполняет этот отдел слухового анализатора человека. Для передачи воздушных колебаний в ухе человека имеется система слуховых косточек, именно их движения активизируют колебание жидкости.

Между внешней частью органа слуха и внутренним отделом располагается среднее ухо. Этот отдел уха имеет вид небольшой полости, емкостью не больше 75 мл.

Эта полость связывается с глоткой, ячейками сосцевидного отростка и слуховой трубой, которая являет собой некий предохранитель, выравнивающий давление внутри уха и снаружи.

Хотелось бы отметить, что барабанная перепонка всегда подвергается одинаковому атмосферному давлению как снаружи, так и внутри, это и позволяет нормально функционировать органу слуха. Если наблюдается разница между давлениями внутри и снаружи, то появятся нарушения остроты слуха.

Строение внутреннего уха

Самой сложноустроенной частью слухового анализатора является внутреннее ухо, его еще принято называть «лабиринтом». Главный рецепторный аппарат, что улавливает звуки, являет собой волосковые клетки внутреннего уха или, как еще говорят, «улитки».

Проводниковый отдел слухового анализатора состоит из 17 000 нервных волокон, что напоминают строение телефонного кабеля с отдельно изолированными проводами, каждый из которых передает определенную информацию в нейроны.

Именно волосистые клетки реагируют на колебания жидкости внутри уха и передают нервные импульсы в виде акустической информации в периферический отдел головного мозга. А периферическая часть мозга отвечает за органы чувств.

Обеспечивают быструю передачу нервных импульсов проводящие пути слухового анализатора. Говоря проще, проводящие пути слухового анализатора осуществляют связь органа слуха с центральной нервной системой человека.

Возбуждения слухового нерва активируют двигательные пути, что отвечают, к примеру, за дергание глаза вследствие сильного звука.

Корковый отдел слухового анализатора связывает между собой периферические рецепторы обеих сторон, и при улавливании звуковых волн этот отдел сопоставляет звуки сразу с двух ушей.

Механизм передачи звуков в разном возрасте

Анатомическая характеристика слухового анализатора с возрастом вовсе не изменяется, но хотелось бы отметить, что имеются некие возрастные особенности.

Органы слуха начинают формироваться у эмбриона на 12 неделе развития. Свою функциональность ухо начинает сразу после рождения, но на начальных этапах слуховая активность человека больше напоминает рефлексы.

Разные по частоте и интенсивности звуки вызывают у детей разные рефлексы, это может быть закрывание глаз, вздрагивание, открывание рта или учащенное дыхание. Если новорожденный так реагирует на отчетливые звуки, то понятно, что слуховой анализатор развит нормально.

При отсутствии этих рефлексов требуется дополнительно исследование.

Иногда реакцию ребенка тормозит тот факт, что изначально среднее ухо новорожденного заполнено некой жидкостью, которая мешает движению слуховых косточек, со временем специализированная жидкость полностью высыхает и вместо нее среднее ухо заполняет воздух.

Разнородные звуки малыш начинает дифференцировать с 3 месяцев, а на 6 месяце жизни начинает различать тона. На 9 месяце жизни ребенок может узнавать голоса родителей, звук машины, пение птицы и другие звуки.

Дети начинают определять знакомый и чужой голос, узнают его и начинают аукать, радоваться или вовсе искать глазами источник родного звука, если его нет рядом.

Развитие слухового анализатора продолжается до 6 лет, после этого порог слышимости ребенка уменьшается, но при этом увеличивается острота слуха. Так продолжается до 15 лет, затем работает в обратном направлении.

В период от 6 до 15 лет можно заметить, что уровень развития слуха отличается, некоторые дети лучше улавливают звуки и способны без трудностей их повторить, им удается хорошо петь и копировать звуки.

Другим детям это удается хуже, но при этом они отлично слышат, на таких детей иногда говорят «медведь на ухо насупил».

Огромное значение имеет общение детей со взрослыми, именно оно формирует речевое и музыкально восприятие ребенка.

Что касается анатомических особенностей, то у новорожденных слуховая труба намного короче, чем у взрослых и шире, из-за этого инфекция из дыхательных путей так часто поражает их органы слуха.

Восприятие звука

Для слухового анализатора адекватным раздражителем является звук. Основными характеристиками каждого звукового тона являются частота и амплитуда звуковой волны.

Чем больше частота, тем звук выше по тону. Сила же звука, выражаемая его громкостью, пропорциональна амплитуде и измеряется в децибелах (дБ). Человеческое ухо способно воспринимать звук в диапазоне от 20 Гц до 20 000 Гц (дети – до 32 000 Гц). Наибольшей возбудимостью ухо обладает к звукам частотой от 1000 до 4000 Гц. Ниже 1000 и выше 4000 Гц возбудимость уха сильно снижается.

Звук силой до 30 дБ слышен очень слабо, от 30 до 50 дБ соответствует шёпоту человека, от 50 до 65 дБ – обыкновенной речи, от 65 до 100 дБ – сильному шуму, 120 дБ – «болевой порог», а 140 дБ – вызывает повреждения среднего (разрыв барабанной перепонки) и внутреннего (разрушение кортиева органа) уха.

Порог слышимости речи у детей 6-9 лет – 17-24 дБА, у взрослых – 7-10 дБА. При утрате способности воспринимать звуки от 30 до 70 дБ наблюдаются затруднения при разговоре, ниже 30 дБ – констатируют почти полную глухоту.

При длительном действии на ухо сильных звуков (2-3 минуты) острота слуха понижается, а в тишине – восстанавливается; для этого достаточно 10-15 секунд (слуховая адаптация).

Изменения слухового аппарата на протяжении жизни

Возрастные особенности слухового анализатора немного меняются на протяжении всей жизни человека.

У новорожденных восприятие высоты и громкости звука снижено, но уже к 6–7 месяцам звуковое восприятие достигает нормы взрослого, хотя функциональное развитие слухового анализатора, связанное с выработкой тонких дифференцировок на слуховые раздражители, продолжается до 6–7 лет. Наибольшая острота слуха свойственна подросткам и юношам (14–19 лет), затем постепенно снижается.

В пожилом возрасте слуховое восприятие меняет свою частоту. Так, в детстве порог чувствительности намного выше, он составляет 3200 Гц. От 14 до 40 лет мы находимся на частоте 3000 Гц, а в 40-49 лет на 2000 Гц. После 50 лет только на 1000 Гц, именно с этого возраста начинает понижаться верхняя граница слышимости, что объясняет глухоту в старческом возрасте.

У пожилых людей часто отмечается смазанное восприятие или прерывистая речь, то есть слышат они с некими помехами. Часть речи они могут услышать хорошо, а несколько слов пропустить.

Для того чтобы человек мог нормально слышать, ему нужны оба уха, одно из которых воспринимает звук, а другое поддерживает равновесие. С возрастом у человека изменятся структура барабанной перепонки, она может под воздействием определенных факторов уплотняться, что будет нарушать равновесие.

Что касается гендерной чувствительности к звукам, то мужчины теряют слух намного быстрей, нежели женщины.

Хотелось бы отметить, что при специальных тренировках даже в пожилом возрасте можно добиться повышения порога слышимости. Аналогично и воздействие громкого шума в постоянном режиме, что может отрицательно повлиять на слуховую систему даже в молодом возрасте.

Для того чтобы избежать негативных последствий от постоянного воздействия громкого звука на организм человека, требуется следить за гигиеной слуха. Это комплекс мер, которые направлены на создание нормальных условий для функционирования слухового органа. У людей молодого возраста критический предел шума составляет 60 дБ, а у детей школьного возраста критический порог 60 дБ.

Достаточно пробыть в помещении с таким уровнем шума в течение часа и негативные последствия не заставят себя ждать.

Еще одним возрастным изменением слухового аппарата является тот факт, что со временем ушная сера затвердевает, это препятствует нормальному колебанию воздушных волн. Если у человека есть склонность к сердечно-сосудистым заболеваниям. Вполне вероятно, что кровь в поврежденных сосудах будет циркулировать быстрей, и человек с возрастом будет различать в ушах посторонние шумы.

Современная медицина давно разобралась, как устроен слуховой анализатор и очень успешно работает над слуховыми аппаратами, которые позволяют вернуть слух людям после 60 лет и дают возможность детям с дефектами развития слухового органа жить полноценной жизнью.

Физиология и схема работы слухового анализатора очень сложная, и понять ее людям без соответствующих навыков очень непросто, но в любом случае теоретически ознакомленным должен быть каждый человек.

Теперь вам известно, как работают рецепторы и отделы слухового анализатора.

Список используемой литературы:

  • А. А. Дроздов «Лор-заболевания: конспект лекций», ISBN: 978-5-699-23334-2;
  • Пальчун В.Т. «Краткий курс оториноларингологии: руководство для врачей». ISBN: 978-5-9704-3814-5;
  • Швецов А.Г. Анатомия, физиология и патология органов слуха, зрения и речи: Учебное пособие. Великий Новгород, 2006 г.

Подготовлено под редакцией Резникова А.И., врача первой категории

Источник: https://bezotita.ru/polezno-znat/sluhovoj-analizator.html

Строение и функции слухового анализатора

Слуховой анализатор особености строения и функции. Строение и функции слухового анализатора

Слуховой анализатор является важнейшей частью системы чувств человека. Строение слухового анализатора позволяет людям общаться друг с другом посредством передачи звука, воспринимать, интерпретировать и реагировать на звуковую информацию: когда приближается машина, благодаря звукам, воспринятым посредством слуха, человек вовремя уходит с дороги, что позволяет избежать опасной ситуации.

Что такое звук

Звуковые волны являют собой вибрации в твердой, жидкой или газообразной среде, которые можно услышать с помощью органа слуха. Звук определяется в слышимом диапазоне спектра, точно так же как свет – в видимой части спектра электромагнитных волн.

Вибрации звуковых волн являют собой распространение движения на молекулярном уровне, которое характеризуется движением молекул около состояния равновесия.

В процессе этого движения, которое создается механическим путем, молекулы подвергаются акустическому давлению, которое приводит к тому, что они сталкиваются друг с другом и передают эти вибрации дальше.

Когда передача энергии прекращается, смещенные со своего места молекулы возвращаются в исходное положение.

Сходство зрительного и слухового анализатора в том, что они оба способны воспринимать конкретные качества, выбирая их из общего звукового потока. Например, место расположения источника звука, его громкость, тембр и т.д.

Но физиология слухового анализатора функционирует так, что слуховая система человека не смешивает разные частоты, как это делает зрение, когда различные длины световых волн смешиваются друг с другом, – и глазной анализатор представляет это в виде непрерывного цвета.

Вместо этого звуковой анализатор разделяет сложные звуки на составляющие тоны и частоты так, что человек различает голоса конкретных людей в общем гуле или отдельные инструменты в звуках оркестра. Особенности отклонений в слухе позволяют выявить различные аудиометрические методы исследования слухового анализатора.

Наружное и среднее ухо

То, как устроен слуховой анализатор влияет на работу его структур, отделов уха, подкорковых релейных и корковых центров. Анатомия слухового анализатора включает в себя строение уха, стволовых и корковых отделов головного мозга. Отделы слухового анализатора – это:

  • периферическая часть слухового анализатора;
  • корковый конец слухового анализатора.

Согласно схеме, строение уха состоит из 3 частей. Внешнее и среднее передают звуки ко внутреннему уху, где они преобразуются для обработки нервной системой в электрические импульсы. Таким образом, функции слухового анализатора делятся на звукопроводящие и звуковоспринимающие.

Внешнее, среднее и внутреннее ухо – это периферический отдел слухового анализатора. Внешняя часть уха состоит из ушной раковины и слухового прохода. Этот проход закрывает с внутренней стороны барабанная перепонка. Слуховой анализатор строение и функции которого включают периферический отдел слухового анализатора, выполняет роль акустической антенны.

Звуковые волны собираются в части внешнего уха, которая называется ушная раковина и по ушному проходу достигает барабанной перепонки, заставляя ее вибрировать. Таким образом, внешнее ухо является резонатором, что усиливает звуковые колебания.

Барабанная перепонка – это конец внешнего уха. Дальше начинается среднее, которое сообщается с носоглоткой посредством евстахиевых труб.

Возрастные особенности слухового анализатора в том, что у новорожденных полость среднего уха заполнена амниотической жидкостью, которую к третьему месяцу сменяет воздух, что попадает сюда через евстахиевы трубы.

В полости среднего уха барабанная перепонка соединяется при помощи цепи из трех слуховых косточек с другой перепонкой, называемой овальным окном. Она закрывает полость внутреннего уха.

Первая косточка, молоточек, вибрируя под действием барабанной перепонки, передает эти колебания наковальне, которая заставляет колебаться стремечко, что давит на овальное окно в улитке.

Основание стремечка оказывает механическое давление, усиленное в десятки раз, на овальное окно, в результате чего перилимфа в улитке начинает колебаться.

Помимо овального окошка, существует круглое, которое также отделяет полость среднего уха и внутреннего уха.

Соотношение барабанной перепонки к поверхности овального окошка составляет 20:1, что позволяет усилить звуковые колебания в двадцать раз. Это надо для того, чтобы для колебания жидкости во внутреннем ухе нужно гораздо больше энергии, чем для колебания воздуха в среднем.

Внутреннее ухо

Во внутреннем ухе представлены два различных органа – слуховой и вестибулярный анализаторы. Благодаря этому схематически строение внутреннего уха предусматривает наличие:

  • преддверия;
  • полукруглых каналов (отвечают за координацию);
  • улитки (отвечает за слух).

Оба анализатора имеют сходные морфологические и физиологические свойства. Среди них – волосковые клетки и механизм передачи информации к головному мозгу.

Различение звуковых частот начинается в улитке внутреннего уха. Она устроена так, что разные ее части реагируют на различную высоту звуковых колебаний. Высокие ноты колеблют одни части базилярной мембраны улитки, низкие – другие.

В базилярной мембране располагаются волосковые клетки, на верхушке которых расположены целые пучки стереоцилий, которые отклоняются расположенной сверху мембраной.

Волосковые клетки превращают механические вибрации в электрические сигналы, которые по слуховому нерву идут к стволу головного мозга. Таким образом, проводниковый отдел слухового анализатора представлен волокнами слухового нерва.

Поскольку каждая волосковая клетка имеет свое место в базилярной мембране, каждая клетка передает в мозг звук другой тональности.

Структура улитки

Улитка является «слышащей» частью внутреннего уха, что размещается в височной части черепа. Она получила свое название благодаря спиральной форме, напоминающую ракушку улитки.

Состоит улитка из трех каналов. Два из них, scala tympani и scala vestibule, заполнены жидкостью, называемой перилимфа. Взаимодействие между ними происходит с помощью маленького отверстия, что именуется helicotrema. Кроме того, между scala tympani и scala vestibuli расположены с внутренней стороны нейроны спирального ганглия и волокна слухового нерва.

Третий канал, scala media, расположен между scala tympani и scala vestibule. Он наполнен эндолимфой. Между scala media и scala tympani на базилярной мембране находится структура, что называется Кортиев орган.

Каналы улитки состоят из двух разновидностей жидкости, перилимфы и эндолимфы. Перилимфа имеет тот же ионный состав, что и внеклеточная жидкость в любой другой части тела. Она наполняет scala tympani и scala vestibule.

Эндолимфа, заполняющая scala media, имеет уникальный состав, предназначенный только для этой части тела состав. Прежде всего, она очень богата калием, который вырабатывается в stria vascularis и очень бедна натрием.

Также в ней практически отсутствует кальций.

Эндолимфа имеет позитивный электрический потенциал (+80 mV) по отношению к перилимфе, богатой натрием. Кортиев орган в верхней части, где расположены стереоцилии, смачивается эндолимфой, у основания клеток – перилимфой.

Таким методом улитка способна провести очень сложный анализ звуков, как по их частоте, так и по громкости. Когда давление звуков передается к жидкости внутреннего уха стремечком, давление волн деформирует базилярную мембрану в той области канала улитки, которая отвечает за эти вибрации. Таким образом, более высокие ноты вынуждают колебаться основание улитки, а низкие ноты – ее вершину.

Доказано, что человеческая улитка способна воспринимать звуки различной тональности. Их частота может изменяться в диапазоне от 20 Гц до 20000 Гц (приблизительно 10-я октава), с шагом в 1/230 октавы (от 3 Гц до 1 тыс. Гц). На частоте 1 тыс. Гц, улитка способна зашифровать давление звуковых волн в диапазоне между 0 дБ и 120 дБ.

Слуховой кортекс

Кроме уха и слухового нерва слуховой анализатор включает в себя головной мозг.

Звуковая информация анализируется в мозгу в разных центрах, по мере того, как сигнал направляется в верхнюю височную извилину головного мозга.

Это слуховой кортекс, который выполняет обрабатывающую звук функцию слухового анализатора человека. Здесь находится огромное количество нейронов, каждый их которых исполняют свою задачу. Например, есть нейроны, что:

  • реагируют на чистые тона (звуки флейты);
  • распознают сложные тона (звуки скрипки);
  • отвечают за длинные звуки;
  • реагируют на короткие звуки;
  • отвечают на изменения громкости звуков.

Есть и такие нейроны, что могут отвечать за сложные звуки, например, определять музыкальный инструмент или слово речи. Связи между слуховым и речедвигательным анализаторами позволяют изучать человеку иностранные языки.

Звуковая информация обрабатывается в различных областях звукового кортекса в обоих полушариях головного мозга. У большинства людей левая сторона мозга отвечает за восприятие и воспроизведение речи. Поэтому повреждение левого слухового кортекса при инсульте может привести к тому, что человек хоть и будет слышать, но не сможет понимать речь.

Первичный путь

Звуковая информация собирается в мозгу двумя проводящими путями слухового анализатора:

  • Первичный слуховой путь, который передает сообщения исключительно от улитки.
  • Непервичный слуховой путь, который также называют ретикулярный сенсорный путь. Он передает сообщения от всех органов чувств.

Первичный путь является коротким и очень быстрым, поскольку скорость передачи импульсов обеспечивают волокна с толстым слоем миелина. Этот путь заканчивается в слуховом кортексе головного мозга, что расположен в боковой борозде височной части головного мозга.

Первичные проводящие пути слухового анализатора проводят нервные импульсы от звукочувствительных клеток улитки. При этом в каждом конечном пункте звена передачи происходит расшифровка и интеграция нервных импульсов ядерными клетками улитки.

Первое переключательное ядро первичного слухового пути находится в улиточных ядрах, что располагается в стволе головного мозга. Нервные импульсы идут по спиральным ганглиарным аксонам типа 1. На этом уровне переключения происходит расшифровка нервных звуковых сигналов, которые характеризуют продолжительность, интенсивность и частоту звука.

Второе и третье переключательные ядра первичного слухового пути играют значительную роль в определении местоположения источника звука. Второе переключательное ядро в стволе головного мозга носит название комплекс верхних олив. На этом уровне большинство синапсов слухового нерва перешли центральную линию. Третье переключательное ядро располагается на уровне среднего мозга.

И, наконец, четвертое переключательное ядро находится в таламусе. Здесь происходит значительная интеграция звуковой информации, и происходит подготовка к моторной реакции (например, произнесение звуков в ответ).

Последний нейрон первичного пути связывает таламус и слуховой кортекс головного мозга. Здесь сообщение, большая часть которого была расшифрована по дороге сюда, распознается, запоминается и интегрируется для дальнейшего произвольного использования.

Непервичные пути

Из ядер улитки небольшие нервные волокна проходят в ретикулярную формацию головного мозга, где звуковые сообщения объединяются с нервными сообщениями, которые поступают сюда от других органов чувств. Следующий пункт переключения – это неспецифические ядра таламуса, после которых этот слуховой путь завершается в полисенсорном ассоциативном кортексе.

функция этих слуховых путей – выработка нервных сообщений, которые подлежат приоритетной обработке. Для этого они соединяются с центрами мозга, отвечающими за чувство бодрствования и мотивации, а также с вегетативной нервной и эндокринной системами. Например, если человек делает сразу два дела, читает книгу и слушает музыку, эта система направит внимание на более важную работу.

Первый передаточный пункт непервичного слухового пути, так же как и первичного, расположен в улиточных ядрах ствола мозга. Отсюда небольшие волокна присоединяются к ретикулярному пути ствола мозга. Здесь, а также в среднем мозгу расположены несколько синапсов, где слуховая информация обрабатывается и интегрируется с информацией от других органов чувств.

При этом информация фильтруется по первичному приоритету.

Другими словами, роль ретикулярной формации мозга в том, чтобы подключить к обрабатываемой звуковой информации нервные сообщения из других центров (бодрствования, мотивации), чтобы произошел отбор нервных сообщений, которые будут обрабатываться в мозгу в первую очередь. После ретикулярной формации, непервичные пути ведут к неспецифическим центрам в таламусе, а дальше в полисенсорный кортекс.

Необходимо понимать, что сознательное восприятие требует интеграции обоих типов слуховых нервных путей, первичного и непервичного. Например, во время сна, первичный слуховой путь функционирует нормально, но сознательное восприятие невозможно, поскольку связь между ретикулярным путем и центрами бодрствования и мотивации не активизирован.

И, наоборот, в результате травмы, повредившей кортекс, сознательное восприятие звуков может быть затруднено, тогда как продолжающееся интегрирование непервичных слуховых путей может привести к реакциям на звук вегетативной нервной системы. Кроме того, если ствол головного мозга и средний мозг остались целы, реакция испуга и удивления может оставаться, даже при отсутствии понимания значения звуков.

Источник: http://HumanSenses.ru/slux/sluhovoy-analizator-stroenie.html

Анатомия: строение и функции слухового анализатора

Слуховой анализатор особености строения и функции. Строение и функции слухового анализатора

Звуковые волны представляют собой вибрации, с определенной частотой передающиеся во всех трех средах: жидкой, твердой и газообразной. Для восприятия и анализа их человеком существует орган слуха – ухо, которое состоит из наружной, средней и внутренней частей, способное получать информацию и передавать ее к головному мозгу для обработки.

Этот принцип работы в организме человека сходен с характерным для глаз. Строение и функции зрительного и слухового анализаторов похожи между собой, разница в том, что слух не смешивает звуковые частоты, воспринимает их отдельно, скорее, даже разделяя разные голоса и звуки.

В свою очередь, глаза соединяют световые волны, получая при этом разные цвета и оттенки.

Слуховой анализатор, строение и функции

Фотографии основных отделов человеческого уха вы можете увидеть в этой статье. Ухо – основной орган слуха у человека, оно принимает звук и передает его дальше в мозг.

Строение и функции слухового анализатора гораздо шире возможностей одного только уха, это слаженная работа передачи импульсов от барабанной перепонки к стволовым и корковым отделам головного мозга, отвечающими за обработку полученных данных.

Орган, отвечающий за механическое восприятие звуков, состоит из трех основных отделов. Строение и функции отделов слухового анализатора различны между собой, но выполняют одну общую работу – восприятие звуков и передача их в мозг для дальнейшего анализа.

Наружное ухо, его особенности и анатомия

Первое, что встречает звуковые волны на пути к восприятию их смысловой нагрузки, это наружное ухо. Анатомия его довольно проста: это ушная раковина и наружный слуховой проход, который является связующим звеном между ним и средним ухом. Сама ушная раковина состоит из хрящевой пластины толщиной 1 мм, покрытой надхрящницей и кожей, она лишена мышечной ткани и не может двигаться.

Нижняя часть раковины – мочка уха, это жировая клетчатка, покрытая кожей и пронизанная множеством нервных окончаний.

Плавно и воронкообразно раковина переходит в слуховой проход, ограниченный козелком спереди и противокозелком сзади.

У взрослого человека проход имеет 2,5 см в длину и 0,7–0,9 см в диаметре, он состоит из внутреннего и перепончато-хрящевого отделов. Ограничивается барабанной перепонкой, за которой начинается среднее ухо.

Перепонка представляет собой фиброзную пластину в форме овала, на поверхности которой можно выделить такие элементы, как молоточек, задняя и передняя складки, пупочек и короткий отросток. Строение и функции слухового анализатора, представленные такой частью, как наружное ухо и барабанная перепонка, отвечают за улавливание звуков, их первичную обработку и передачу далее к средней части.

Строение и функции отделов слухового анализатора кардинально отличаются друг от друга, и если с анатомией наружной части все знакомы не понаслышке, то изучению информации о среднем и внутреннем ухе стоит уделить больше внимания. Среднее ухо представляет собой четыре воздухоносные полости, соединенные между собой, и наковальню.

часть, выполняющая основные функции уха – это барабанная полость, совмещенная с носоглоткой слуховой трубой, через это отверстие происходит вентиляция всей системы.

Сама полость состоит из трех камер, шести стенок и слуховой косточки, которая, в свою очередь, представлена молоточком, наковальней и стременем.

Строение и функции слухового анализатора в области среднего уха преображают полученные от наружной части звуковые волны в механические колебания, после чего передают их жидкости, которая заполняет полость внутренней части уха.

Внутреннее ухо, его особенности и анатомия

Внутреннее ухо представляет самую сложную систему из всех трех отделов слухового аппарата. Оно выглядит как лабиринт, который находится в толще височной кости, и являет собой костную капсулу и включенное в нее перепончатое образование, которое полностью повторяет строение костного лабиринта. Условно все ухо делится на три основные части:

  • средний лабиринт – преддверие;
  • передний лабиринт – улитка;
  • задний лабиринт – три полукружных канала.

Лабиринт полностью повторяет строение костной части, а полость между двумя этими системами заполнена перилимфой, напоминающей по своему составу плазму и спинномозговую жидкость. В свою очередь, полости в самом перепончатом лабиринте заполнены эндолимфой, по составу сходной с внутриклеточной жидкостью.

Слуховой анализатор, строение уха, функция рецепторов внутреннего уха

Функционально работа внутреннего уха делится на две основные функции: передача звуковых частот к мозгу и координация движений человека. Основную роль в передаче звука к отделам головного мозга выполняет улитка, разные части которой воспринимают колебания с различной частотой.

Все эти вибрации принимает на себя базилярная мембрана, покрытая волосковыми клетками с пучками стереолиций на верхушке. Именно эти клетки превращают колебания в электрические импульсы, которые идут в головной мозг по слуховому нерву.

Каждый волосок мембраны имеет разный размер и принимает звук только строго определенной частоты.

Принцип работы вестибулярного аппарата

Строение и функции слухового анализатора не ограничиваются одним лишь восприятием и переработкой звуков, он играет важную роль во всей двигательной активности человека. За работу вестибулярного аппарата, от которого зависит координация движений, отвечают жидкости, которыми заполнена часть внутреннего уха.

Основную роль здесь играет эндолимфа, она работает по принципу гироскопа. Малейший наклон головы приводит ее в движение, она, в свою очередь, заставляет двигаться отолиты, которые раздражают волоски реснитчатого эпителия.

С помощью сложных нейронных связей вся эта информация передается в отделы мозга, дальше уже начинается его работа по координации и стабилизации движений и равновесия.

Принцип слаженной работы всех камер уха и головного мозга, преображение звуковых колебаний в информацию

Строение и функции слухового анализатора, кратко изучить которые можно выше, направлены не просто на улавливание звуков определенной частоты, а на их преобразование в информацию, понятную сознанием человека. Вся работа по превращению состоит из следующих основных этапов:

  1. Улавливание звуков и их движение по слуховому проходу, стимулирующие барабанную перепонку к колебанию.
  2. Вибрация трех слуховых косточек внутреннего уха, вызванная колебаниями барабанной перепонки.
  3. Движение жидкости во внутреннем ухе и колебания волосовидных клеток.
  4. Преобразование колебаний в электрические импульсы для дальнейшей их передачи по слуховым нервам.
  5. Продвижение импульсов по слуховому нерву в отделы мозга и преобразование их в информацию.

Слуховой кортекс и анализ информации

Какой отлаженной и идеальной не была бы работа всех отделов уха, все было бы бессмысленно без функций и работы головного мозга, преобразующего все звуковые волны в информацию и руководство к действию.

Первое, что встречает звук на своем пути, это слуховой кортекс, находящийся в верхней височной извилине головного мозга. Здесь находятся нейроны, которые отвечают за восприятие и разделение всех диапазонов звука.

Если в силу каких-либо повреждений головного мозга, например инсульта, повреждаются эти отделы, то человек может стать слабослышащим или вовсе потерять слух и возможность к восприятию речи.

С увеличением возраста человека изменяется работа всех систем, строение, функции и возрастные особенности слухового анализатора не являются исключением.

У людей в возрасте часто наблюдается снижение слуха, которое принято считать физиологическим, т. е. нормальным.

Это не считается заболеванием, а лишь возрастным изменением под названием персбиакузис, которое не надо лечить, а можно лишь скорректировать с помощью специальных слуховых аппаратов.

Выделяют целый ряд причин, по которым возможно снижение слуха у людей, достигших определенного возрастного порога:
  1. Изменения в наружном ухе – истончение и дряблость ушной раковины, сужение и искривление слухового прохода, потеря его способности к передаче звуковых волн.
  2. Утолщение и помутнение барабанной перепонки.
  3. Снижение подвижности системы косточек внутреннего уха, закостенелость их суставов.
  4. Изменения в отделах головного мозга, отвечающих за переработку и восприятие звуков.

Помимо обычных функциональных изменений у здорового человека, проблемы могут усугубляться осложнениями и последствиями перенесенных отитов, они могут оставлять шрамы на барабанной перепонке, которые провоцируют проблемы в будущем.

После того как ученые-медики изучили такой важный орган, как слуховой анализатор (строение и функции), глухота, вызванная возрастом, перестала быть глобальной проблемой. Слуховые аппараты, направленные на улучшение и оптимизацию работы каждого из отделов системы, помогают пожилым людям жить полноценной жизнью.

Гигиена и уход за органами слуха человека

Чтобы сохранить уши здоровыми, за ними, как и за всем телом, нужен своевременный и аккуратный уход. Но, как это ни парадоксально, в половине случаев проблемы возникают именно из-за чрезмерного ухода, а не из-за его недостатка.

Основная причина – неумелое орудование ушными палочками или другими средствами для механической очистки скопившейся серы, задевание барабанной перегородки, ее царапины и возможность случайной перфорации.

Во избежание подобных травм следует очищать лишь наружную часть прохода, не используя при этом острые предметы.

Для сохранения слуха в будущем лучше придерживаться правил безопасности:

  • Ограниченное прослушивания музыки с использованием наушников.
  • Использование специальных наушников и берушей при работе на шумных предприятиях.
  • Защита от попадания воды в уши во время плавания в бассейне и водоемах.
  • Профилактика отитов и простудных заболеваний ушей в холодное время года.

Понимание принципов работы слухового анализатора, соблюдение правил гигиены и безопасности дома или на работе помогут сохранить слух и не столкнуться с проблемой его потери в будущем.

Источник: https://FB.ru/article/307517/anatomiya-stroenie-i-funktsii-sluhovogo-analizatora

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.