Умножение 2 х значных чисел. Умножение двузначных чисел

Содержание

Как быстро считать в уме: приемы устного счета больших чисел

Умножение 2 х значных чисел. Умножение двузначных чисел

Образец

Устный счет – занятие, которым в наше время себя утруждает все меньшее количество людей. Гораздо проще достать калькулятор на телефоне и вычислить любой пример.

Но так ли это на самом деле? В этой статье мы представим математические лайфхаки, которые помогут научиться быстро складывать, вычитать, умножать и делить числа в уме. Причем оперируя не единицами и десятками, а  минимум двухзначными и трехзначными числами.

После освоения методов из этой статьи идея лезть в телефон за калькулятором уже не покажется такой хорошей. Ведь можно не тратить время и посчитать все в уме гораздо быстрее, а заодно размять мозги и произвести впечатление на окружающих (противоположного пола).

Итак, добро пожаловать в увлекательный мир вычислений! Мы собрали советы от наших авторов о том, как улучшить устный счет и стать математическим героем и гением. Кстати, если вам интересна математика, вы можете почитать статью “Пределы для чайников” в нашем блоге.

Предупреждаем! Если вы обычный человек, а не вундеркинд, то для развития навыка счета в уме понадобятся тренировки и практика, концентрация внимания и терпение. Сначала все может получаться медленно, но потом дело пойдет на лад, и вы сможете быстро считать в уме любые числа.

Гаусс и устный счет

Карл Фридрих Гаусс

Одним из математиков с феноменальной скоростью устного счета был знаменитый Карл Фридрих Гаусс (1777-1855). Да-да, тот самый Гаусс, который придумал нормальное распределение.

По его собственным словам, он научился считать раньше, чем говорить.  Когда Гауссу было 3 года, мальчик взглянул на платежную ведомость своего отца и заявил: «Подсчеты неверны». После того как взрослые все перепроверили, выяснилось, что маленький Гаусс был прав.

В дальнейшем этот математик достиг немалых высот, а его труды до сих пор активно используются в теоретических и прикладных науках. До самой смерти большую часть вычислений Гаусс производил в уме.

Здесь мы не будем заниматься сложными расчетами, а начнем с самого простого.

Сложение чисел в уме

Чтобы научиться складывать в уме большие числа, нужно уметь безошибочно складывать числа до 10. В конечном счете любая сложная задача сводится к выполнению нескольких тривиальных действий.

Чаще всего проблемы и ошибки возникают при сложении чисел с «переходом через 10». При сложении (да и при вычитании) удобно применять технику «опоры на десяток». Что это? Сначала мы мысленно спрашиваем себя, сколько одному из слагаемых не хватает до 10, а потом прибавляем к 10 оставшуюся до второго слагаемого разность.

Например, сложим числа 8 и 6. Чтобы из 8 получить 10, не хватает 2. Затем к 10 останется прибавить 4=6-2. В итоге получаем: 8+6=(8+2)+4=10+4=14

Основная хитрость со сложением больших чисел – разбить их на разрядные части, а потом сложить эти части между собой.

Пусть нам нужно сложить два числа: 356 и 728. Число 356 можно представить как 300+50+6.  Аналогично, 728 будет иметь вид 700+20+8. Теперь складываем:

356+728=(300+700)+(50+20)+(8+6)=1000+70+14=1084

Вычитание чисел в уме

Вычитание чисел тоже будет даваться легко. Но в отличие от сложения, где каждое число разбивается на разрядные части, при вычитании «разбить» нужно только то число, которое мы отнимаем.

Например, сколько будет 528-321? Разбиваем число 321 на разрядные части и получаем: 321=300+20+1.

Теперь считаем: 528-300-20-1=228-20-1=208-1=207

Попробуйте визуализировать процессы сложения и вычитания. В школе всех учили считать в столбик, то есть сверху вниз. Один из способов перестроить мышление и ускорить счет – считать не сверху вниз, а слева направо, разбивая числа на разрядные части.

Умножение чисел в уме

Умножение – это многократное повторение числа. Если нужно умножить 8 на 4, это значит, что число 8 нужно повторить 4 раза.

8*4=8+8+8+8=32

Так как все сложные задачи сводятся к более простым, нужно уметь умножать все однозначные числа. Для этого существует отличный инструмент – таблица умножения. Если вы не знаете эту таблицу на зубок, то мы настоятельно рекомендуем первым делом выучить ее и только потом приниматься за практику устного счета. К тому же учить там, по сути, нечего.

Таблица умножения

Умножение многозначных чисел на однозначные

Сначала потренируйтесь в умножении многозначных чисел на однозначные. Пусть нужно умножить 528 на 6. Разбиваем число 528 на разряды и идем от старшего к младшему. Сначала умножаем, а потом складываем результаты.

528=500+20+8

528*6=500*6+20*6+8*6=3000+120+48=3168

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Умножение двузначных чисел

Здесь тоже нет ничего сложного, только нагрузка на краткосрочную память немного больше.

Перемножим 28 и 32. Для этого сведем всю операцию к умножению на однозначные числа. Представим 32 как 30+2

28*32=28*30+28*2=20*30+8*30+20*2+8*2=600+240+40+16=896

Еще один пример. Умножим 79 на 57. Это значит, что на нужно взять число «79» 57 раз. Разобьем всю операцию на этапы. Сначала умножим 79 на 50, а потом – 79 на 7.

  • 79*50=(70+9)*50=3500+450=3950
  • 79*7=(70+9)*7=490+63=553
  • 3950+553=4503

Умножение на 11

Вот хитрый прием быстрого устного счета, который поможет умножить любое двузначное число на 11 с феноменальной скоростью.

Чтобы умножить двузначное число на 11, две цифры числа складываем друг с другом, и получившуюся сумму вписываем между цифрами исходного числа. Получившееся в итоге трехзначное число – результат умножения исходного числа на 11.

Проверим и умножим 54 на 11.

Возьмите любое двузначное число, умножьте его на 11 и убедитесь сами – эта хитрость работает!

Возведение в квадрат

С помощью другого интересного приема устного счета можно легко и быстро возводить двузначные числа в квадрат. Особенно просто это делать с числами, которые заканчиваются на 5.

Результат начинается с произведения первой цифры числа на следующую за ней по иерархии. То есть, если эту цифру обозначить через n, то следующей за ней по иерархии цифрой будет n+1. Результат заканчивается на квадрат последней цифры, то есть квадрат 5.

Проверим! Возведем в квадрат число 75.

Раньше все считали без калькуляторов

Деление чисел в уме

Осталось разобраться с делением. По сути, это операция, обратная умножению. С делением чисел до 100 никаких проблем вообще возникать не должно – ведь есть таблица умножения, которую вы знаете на зубок.

Деление на однозначное число

При делении многозначных чисел на однозначное необходимо выделить максимально большую часть, которую можно разделить с помощью таблицы умножения.

Например, есть число 6144, которое нужно разделить на 8. Вспоминаем таблицу умножения и понимаем, что на 8 будет делиться число 5600. Представим пример в виде:

6144:8=(5600+544):8=700+544:8

Далее из числа 544 также выделяем максимально большое число, которое делится на 8. Имеем:

544:8=(480+64):8=60+64:8

Осталось разделить 64 на 8 и получить результат, сложив все результаты деления

64:8=8

6144:8=700+60+8=768

Деление на двузначное число

При делении на двузначное число нужно пользоваться правилом последней цифры результата при умножении двух чисел.

При умножении двух многозначных чисел последняя цифра результата умножения всегда совпадает с последней цифрой результата умножения последних цифр этих чисел.

Например, умножим 1325 на 656. По правилу, последняя цифра в получившемся числе будет 0, так как 5*6=30. Действительно, 1325*656=869200.

Теперь, вооружившись этой ценной информацией, рассмотрим деление на двузначное число.

Сколько будет 4424:56?

Первоначально будем пользоваться методом «подгона» и найдем пределы, в которых лежит результат. Нам нужно найти число, которое при умножении на 56 даст 4424. Интуитивно попробуем число 80.

56*80=4480

Значит, искомое число меньше 80 и явно больше 70. Определим его последнюю цифру. Ее произведение на 6 должно заканчиваться цифрой 4.

Согласно таблице умножения, нам подходят результаты 4 и 9. Логично предположить, что результатом деления  может быть либо число 74, либо 79.

Проверяем:

79*56=4424

Готово, решение найдено! Если бы не подошло число 79, второй вариант обязательно оказался бы верным.

Картина Н.П. Богданова-Бельского «Устный счёт. В народной школе С. А. Рачинского»

Полезные советы

В заключение приведем несколько полезных советов, которые помогут быстро научиться устному счету:

  • Не забывайте тренироваться каждый день;
  • не бросайте тренировки, если результат не приходит так быстро, как хотелось бы;
  • скачайте мобильное приложение для устного счета: так вам не придется самостоятельно придумывать себе примеры;
  • почитайте книги по методикам быстрого устного счета. Существуют разные техники устного счета, и вы сможете овладеть той, которая лучше всего подходит именно вам.

Польза устного счета неоспорима. Тренируйтесь, и с каждым днем вы будете считать все быстрее и быстрее. А если вам понадобится помощь в решении более сложных и многоуровневых задач, обращайтесь к специалистам студенческого сервиса за быстрой и квалифицированной помощью!

Источник: https://Zaochnik-com.ru/blog/kak-bystro-schitat-v-ume-priemy-ustnogo-scheta-bolshix-chisel/

Урок 3. Традиционное умножение в уме

Умножение 2 х значных чисел. Умножение двузначных чисел

Давайте рассмотрим, как можно умножать двузначные числа, используя традиционные методы, которым нас обучают в школе.

Некоторые из этих методов, могут позволить вам быстро перемножать в уме двузначные числа при достаточной тренировке. Знать эти методы полезно. Однако важно понимать, что это лишь вершина айсберга.

В данном уроке рассмотрены наиболее популярные приемы умножения двузначных чисел.

Первый способ – раскладка на десятки и единицы

Самым простым для понимания способом умножения двузначных чисел является тот, которому нас научили в школе. Он заключается в разбиении обоих множителей на десятки и единицы с последующим перемножением получившихся четырех чисел. Этот метод достаточно прост, но требует умения удерживать в памяти одновременно до трех чисел и при этом параллельно производить арифметические действия.

Например: 63*85 = (60+3)*(80+5) = 60*80 + 60*5 +3*80 + 3*5=4800+300+240+15=5355

Проще такие примеры решаются в 3 действия. Сначала умножаются десятки друг на друга. Потом складываются 2 произведения единиц на десятки. Затем прибавляется произведение единиц. Схематично это можно описать так:

  • Первое действие: 60*80 = 4800 – запоминаем
  • Второе действие: 60*5+3*80 = 540 – запоминаем
  • Третье действие: (4800+540)+3*5= 5355 – ответ

Для максимально быстрого эффекта потребуется хорошее знание таблицы умножения чисел до 10, умение складывать числа (до трехзначных), а также способность быстро переключать внимание с одного действия на другое, держа предыдущий результат в уме. Последний навык удобно тренировать путем визуализации совершаемых арифметических операций, когда вы должны представлять себе картинку вашего решения, а также промежуточные результаты.

Вывод. Не трудно убедиться в том, что этот способ не является самым эффективным, то есть позволяющим при наименьших действиях получить правильный результат. Следует принять во внимание другие способы.

Второй способ – арифметические подгонки

Приведение примера к удобному виду является достаточно распространенным способом счета в уме. Подгонять пример удобно, когда вам нужно быстро найти примерный или точный ответ.

Желание подгонять примеры под определенные математические закономерности часто воспитывается на математических кафедрах в университетах или в школах в классах с математическим уклоном.

Людей учат находить простые и удобные алгоритмы решения различных задач. Вот некоторые примеры подгонки:

Пример 49*49 может решаться так: (49*100)/2-49. Сначала считается 49 на сто – 4900. Затем 4900 делится на 2, что равняется 2450, затем вычитается 49. Итого 2401.

Произведение 56*92 решается так: 56*100-56*2*2*2. Получается: 56*2= 112*2=224*2=448. Из 5600 вычитаем 448, получаем 5152.

Этот способ может оказаться эффективнее предыдущего только в случае, если вы владеете устным счетом на базе перемножения двузначных чисел на однозначные и можете держать в уме одновременно несколько результатов. К тому же приходится тратить время на поиск алгоритма решения, а также уходит много внимания за правильным соблюдением этого алгоритма.

Вывод. Способ, когда вы стараетесь умножить 2 числа, раскладывая их на более простые арифметические процедуры, отлично тренирует ваши мозги, но связан с большими мысленными затратами, а риск получить неправильный результат выше, чем при первом методе.

Третий способ – мысленная визуализация умножения в столбик

56*67 – посчитаем в столбик.

Наверное, счет столбиком содержит максимальное количество действий и требует постоянно держать в уме вспомогательные числа. Но его можно упростить. Во втором уроке рассказывалось, что важно уметь быстро умножать однозначные числа на двузначные. Если вы уже умеете это делать на автомате, то счет в столбик в уме для вас будет не таким уж и трудным. Алгоритм таков

Первое действие: 56*7 = 350+42=392 – запомните и не забывайте до третьего действия.

Второе действие: 56*6=300+36=336 (ну или 392-56)

Третье действие: 336*10+392=3360+392=3 752 – тут посложнее, но вы можете начинать называть первое число, в котором уверены – «три тысячи…», а пока говорите, складывайте 360 и 392.

Вывод: счет в столбик напрямую сложен, но вы можете, при наличии навыка быстрого умножения двузначных чисел на однозначные, его упросить. Добавьте в свой арсенал и этот метод. В упрощенном виде счет в столбик является некоторой модификацией первого метода. Что лучше – вопрос на любителя.

Как можно заметить, ни один из описанных выше способов не позволяет считать в уме достаточно быстро и точно все примеры умножения двузначных чисел. Нужно понимать, что использование традиционных способов умножения для счета в уме не всегда является рациональным, то есть позволяющим при наименьших усилиях достигать максимального результата.

Евгений Буянов← 2 Простая арифметика4 Частные методики →

1PRO

Источник: https://4brain.ru/schitat-v-ume/tradicionnoe-unozhenie.php

Быстрый счёт в уме: умножение

Умножение 2 х значных чисел. Умножение двузначных чисел

Числа окружают нас везде. Мы почти каждый день ходим в магазин, планируем расходы, переводим рубли в доллары, наконец.

Конечно же, сложение и вычитание небольших чисел большинство выполняет в уме, например, при покупке батона за 22 рубля мы сразу смекаем, что с отданных 50 должны получить 28 сдачи. Но иногда требуется более сложные операции — умножения (3 батона) или деления (500 граммов сыра).

Я, конечно, не в состоянии научить вас счёту в уме для любых чисел, тем более, что для этого есть калькулятор, но попытаюсь донести, что неплохо владея навыками сложения и вычитания, можно так же успешно, а главное быстро, умножать в уме. Конечно, речь не идёт о дробных или двузначных числах. Но с умножение на цифры в состоянии справится любой.

Если для вас является проблемой сложение и вычитание даже небольших чисел, не отчаивайтесь.

Небольшая практика быстро заставит мозг «шуршать», а продолжив занятия, можно будет с каждым разом оперировать всё большими числами и за меньшее время.

Именно эти простейшие арифметические опреции лежат в основе более сложных — умножения и деления, поэтому прежде, чем переходить к следующему шагу крайне желательно подтянуть азы.

На 2

Для умножения на 2 достаточно сложить число само с собой: 123 × 2 = 123 + 123 = 246

На 3

Тоже довольно тривиальная задача. В простейшем случае можно трижды сложить число самим с собой: 123 × 3 = 123 + 123 + 123 = 369

Но иногда проще сделать поразрядное умножение: 123 × 3 = 100 × 3 + 20 × 3 + 3 × 3 = 300 + 60 + 9 = 369

На 4

Так как 4 это не что иное, как 2 × 2, достаточно умножаемое число сложить сперва самим с собой, а затем ещё раз сложить полученную сумму: 123 × 4 = (123 + 123) × 2 = 246 + 246 = 492

На 5

Данная цифра ровно в 2 раза меньше 10, сделовательно, можно сначала разделить на 2, а затем умножить на 10, либо поступить наоборот: умножить на 10 и разделить на 2 (смотря что проще): 123 × 5 = 123 × 10 / 2 = 1230 / 2 = 615

На 6

Цифру 6 можно представить с помощью произведения 2 × 3, а это мы уже разобрали: 123 × 6 = 123 × 3 × 2 = 369 × 2 = 738

На 7

Наиболее простой способ — поразрядное умножение: 123 × 7 = 100 × 7 + 20 × 7 + 3 × 7 = 700 + 140 + 21 = 861

На 8

Цифра 8 получается при тройном умножении двойки на себя: 123 × 8 = 123 × 2 × 2 × 2 = 246 × 2 × 2 = 492 × 2 = 984

Иногда проще бывает исходное число умножить на 10 и отнять удвоенное исходное числа: 123 × 8 = 123 × 10 — 123 × 2 = 1230 — 246 = 984

На 9

Несмотря на то, что цифру 9 можно получить, умножив тройку саму на себя, есть способ намного легче: нужно к умножаемому числу прибавить ноль (т. е. умножить на 10) и отнять от получившегося значения исходное число: 123 × 9 = 123 × 10 — 123 = 1230 — 123 = 1107

Вот мы и разобрались (я надеюсь) с цифрами. В качестве небольшого бонуса приведу ещё несколько вариантов умножения, на этот раз, с числами.

Умножение на 10, 100, 1000 и т. д

Т. к. мы оперируем десятичной системой счисления, наиболее простое умножения как раз будет на числа, начинающие следующие разряды. Для умножения необходимо просто добавить 1 (2, 3, …) ноль в конец множителя: 123 × 100 = 12300

На 11

По аналогии с умножением на 9, только в данном случае необходимо прибавить исходное число: 123 × 11 = 123 × 10 + 123 = 1230 + 123 = 1353

На 20, 30, …

Здесь достаточно представить число в виде множителей, для которых нам известен порядок действий, например, 20 = 2 × 10, 300 = 3 × 100 и т. п.: 123 × 500 = 123 × 5 × 100 = ( 123 × 100 / 2 ) × 100 = 615 × 100 = 61500

Как видим, некоторые числа вполне можно представить в виде произведения и выполнить ряд более простых действий. А поупражнявшись некоторое время с удивлением обнаружите, что калькулятор будет нужен всё реже. В заключении, приведу ещё один интересный способ, который может быть полезен при перемножении двух чисел.

Умножение по формуле «разность квадратов»

Если кто-то не помнит эту формулу из школьного курса математики, вот она:
a2 — b2 = (a + b) × (a — b)

Допустим, нужно умножить 123 на 117. Данное произведение удобно разложить по этой формуле, т. к. 123 = 120 + 3, а 117 = 120 — 3. Составим простое выражение и убедимся, что можно легко «вертеть» в уме даже такими значениями, для которых, казалось бы, необходим калькулятор: 123 × 117 = (120 + 3) × (120 — 3) = 1202 — 32 = 14400 — 9 = 14391

Ещё пример, на этот раз попроще, для двузначных чисел: умножим 28 на 32. Снова раскладываем множители на составляющие: 28 = 30 — 2 и 32 = 30 + 2. Итоговая формула принимает вид: 28 × 32 = (30 + 2) × (30 — 2) = 302 — 22 = 900 — 4 = 896

Элементарно, не так ли? 😉

(3 , в среднем: 5,00 из 5)
Загрузка…

Источник: https://a-panov.ru/mind-multiplication/

Умножение в столбик

Умножение 2 х значных чисел. Умножение двузначных чисел

Умножение многозначных или многоразрядных чисел удобно производить письменно в столбик, последовательно умножая каждый разряд. Давайте разберем, как это делать. Начнем с умножения многоразрядного числа на одноразрядное число и постепенно увеличим разрядность второго множителя.

Для того чтобы умножить в столбик два числа, разместите их одно под другим, единицы под единицами, десятки под десятками и так далее. Сравните два множителя и меньший разместите под большим. Затем начинайте умножать каждый разряд второго множителя на все разряды первого множителя.

Умножение многозначного числа на однозначное

Пишем однозначное число под единицами многозначного.

Умножаем 2 последовательно на все разряды первого множителя:

Умножаем на единицы:

8 × 2 = 16

6 пишем под единицами, а 1 десяток запоминаем. Для того, чтобы не забыть пишем 1 над десятками.

Умножаем на десятки:

3 десятка × 2 = 6 десятков + 1 десяток(запоминали) = 7 десятков. Ответ пишем под десятками.

Умножаем на сотни:

4 сотни × 2 = 8 сотен. Ответ пишем под сотнями. В результате получаем:

438 × 2 = 876

Умножение многозначного числа на многозначное

924 × 35

Пишем двухзначное число под трехзначным, единицы под единицами, десятки под десятками.

1 этап: находим первое неполное произведение, умножив 924 на 5.

Умножаем 5 последовательно на все разряды первого множителя.

Умножаем на единицы:

4 × 5 = 20             0 пишем под единицами второго множителя, 2 десятка запоминаем.

Умножаем на десятки:

2 десятка × 5 = 10 десятков + 2 десятка (запоминали) = 12 десятков, пишем 2 под десятками второго множителя, 1 запоминаем.

Умножаем на сотни:

9 сотен × 5 = 45 сотен + 1 сотня (запоминали) = 46 сотен, пишем 6 под разрядом сотен, а 4 под разрядом тысяч второго множителя.

924 × 5 = 4620

2 этап: находим второе неполное произведение, умножив 924 на 3.

Умножаем 3 последовательно на все разряды первого множителя. Ответ пишем под ответом первого этапа, сдвинув его на один разряд влево.

Умножаем на единицы:

4 × 3 = 12             2 пишем под разрядом десятков, 1 запоминаем.

Умножаем на десятки:

2 десятка × 3 = 6 десятков + 1 десяток (запоминали)  =  7 десятков, пишем 7 под разрядом сотен.

Умножаем на сотни:

9 сотен × 3 = 27 сотен, 7 пишем в разряд тысяч, а 2 в разряд десятков тысяч.

3 этап: складываем оба неполных произведения.

Складываем поразрядно, учитывая сдвиг.

В результате получаем:

924 × 35 = 32340

Умножим трехзначное число на трехзначное:

Возьмем первый множитель из предыдущего примера, а второй множитель тоже из предыдущего, но больше на 8 сотен:

924 × 835

Итак, два первых этапа такие же, как в предыдущем примере.

3 этап: находим третье неполное произведение, умножив 924 на 8

Умножаем 8 последовательно на все разряды первого множителя. Результат пишем под вторым неполным произведением со сдвигом влево, в разряд сотен.

4 × 8 = 32, пишем 2 в разряд сотен, 3 запоминаем

2 × 8 = 16 + 3 (запоминали) = 19, пишем 9 в разряд тысяч, 1 запоминаем

9 × 8 = 72 + 1 (запоминали) = 73, пишем 73 в разряды сотен и десятков тысяч соответственно.

4 этап: складываем три неполных произведения.

В результате получаем:

924 × 835 = 771540

Итак, сколько разрядов во втором множителе, столько и будет слагаемых в сумме неполных произведений.

Умножение на число оканчивающееся нулями

Возьмем два множителя с одинаковой разрядностью:

3420 × 2700

При умножении двух чисел оканчивающихся нулями пишем одно число под другим так, чтобы нули обоих множителей остались в стороне.

Теперь умножаем два числа, не обращая внимания на нули:

342 × 27 = 9234

Общее количество нулей приписываем к получившемуся произведению.

В результате получаем:

3420 × 2700 = 9234000

Подведем итог. Для того чтобы письменно в столбик умножить два числа друг на друга, надо:

1. Сравнить два числа и меньшее написать под большим, единицы под единицами, десятки под десятками и так далее. Если числа с нулями, то пишем одно число под другим так, чтобы нули обоих множителей остались в стороне.

2. Умножаем последовательно каждый разряд второго множителя, начиная с единиц, на все разряды первого множителя. На нули внимания не обращаем

3. Неполные произведения пишем друг под другом, сдвигая каждое неполное произведение на один разряд влево. Сколько во втором множителе значащих разрядов (не 0), столько будет неполных произведений.

4. Складываем все неполные произведения.

5. К полученному результату приписываем нули из обоих множителей.

Вот и все, спасибо, что Вы с нами!

Источник: http://beginnerschool.ru/gen_rules/matem-gen_rules/umnozhenie-v-stolbik

Эффективный счёт в уме или разминка для мозга

Умножение 2 х значных чисел. Умножение двузначных чисел

Эта статья навеяна топиком «Как и насколько быстро вы считаете в уме на элементарном уровне?» и призвана распространить приёмы С.А. Рачинского для устного счёта.

Рачинский был замечательным педагогом, преподававшим в сельских школах в XIX веке и показавшим на собственном опыте, что развить навык быстрого устного счёта можно.

Для его учеников не было особой проблемой посчитать подобный пример в уме:

Используем круглые числа

Один из самых распространённых приёмов устного счёта заключается в том, что любое число можно представить в виде суммы или разности чисел, одно или несколько из которых «круглое»:

Т.к. на 10, 100, 1000 и др.

круглые числа умножать быстрее, в уме нужно сводить всё к таким простым операциям, как 18 x 100 или 36 x 10. Соответственно, и складывать легче, «отщепляя» круглое число, а затем добавляя «хвостик»: 1800 + 200 + 190.

Еще пример:31 x 29 = (30 + 1) x (30 – 1) = 30 x 30 – 1 x 1 = 900 – 1 = 899.

Упростим умножение делением

При устном счёте бывает удобнее оперировать делимым и делителем нежели целым числом (например, 5 представлять в виде 10:2, а 50 в виде 100:2):
68 x 50 = (68 x 100) : 2 = 6800 : 2 = 3400;3400 : 50 = (3400 x 2) : 100 = 6800 : 100 = 68.
Аналогично выполняется умножение или деление на 25, ведь 25 = 100:4.

Например,
600 : 25 = (600 : 100) x 4 = 6 x 4 = 24;24 x 25 = (24 x 100) : 4 = 2400 : 4 = 600.

Теперь не кажется невозможным умножить в уме 625 на 53:
625 x 53 = 625 x 50 + 625 x 3 = (625 x 100) : 2 + 600 x 3 + 25 x 3 = (625 x 100) : 2 + 1800 + (20 + 5) x 3 = = (60000 + 2500) : 2 + 1800 + 60 + 15 = 30000 + 1250 + 1800 + 50 + 25 = 33000 + 50 + 50 + 25 = 33125.

Возведение в квадрат двузначного числа

Оказывается, чтобы просто возвести любое двузначное число в квадрат, достаточно запомнить квадраты всех чисел от 1 до 25. Благо, квадраты до 10 мы уже знаем из таблицы умножения.

Остальные квадраты можно посмотреть в нижеприведённой таблице:

Приём Рачинского заключается в следующем.

Для того чтобы найти квадрат любого двузначного числа, надо разность между этим числом и 25 умножить на 100 и к получившемуся произведению прибавить квадрат дополнения данного числа до 50 или квадрат избытка его над 50-ю. Например,

372 = 12 x 100 + 132 = 1200 + 169 = 1369; 842 = 59 x 100 + 342 = 5900 + 9 x 100 + 162 = 6800 + 256 = 7056;
В общем случае (M — двузначное число): Попробуем применить данный трюк при возведении в квадрат трёхзначного числа, разбив его предварительно на более мелкие слагаемые: 1952 = (100 + 95)2 = 10000 + 2 x 100 x 95 + 952 = 10000 + 9500 x 2 + 70 x 100 + 452 = 10000 + (90+5) x 2 x 100 + + 7000 + 20 x 100 + 52 = 17000 + 19000 + 2000 + 25 = 38025. Хм, я бы не сказала, что это сильно легче, чем возведение в столбик, но, возможно, со временем можно приноровиться. И начинать тренировки, конечно, следует с возведения в квадрат двузначных чисел, а там уже и до дизассемблирования в уме можно дойти.

Умножение двузначных чисел

Этот интересный приём был придуман 12-летним учеником Рачинского и является одним из вариантов добавления до круглого числа.

Пусть даны два двузначных числа, у которых сумма единиц равна 10: M = 10m + n, K = 10a + 10 – n. Составив их произведение, получим:

Например, вычислим 77 x 13. Сумма единиц этих чисел равна 10, т.к.

7 + 3 = 10. Сначала ставим меньшее число перед большим: 77 x 13 = 13 x 77.

Чтобы получить круглые числа, мы забираем три единицы от 13 и добавляем их к 77. Теперь перемножим новые числа 80 x 10, а к полученному результату прибавим произведение отобранных 3 единиц на разность старого числа 77 и нового числа 10:
13 x 77 = 10 x 80 + 3 x (77 – 10) = 800 + 3 x 67 = 800 + 3 x (60 + 7) = 800 + 3 x 60 + 3 x 7 = 800 + 180 + 21 = 800 + 201 = 1001. У этого приёма есть частный случай: всё значительно упрощается, когда у двух сомножителей одинаковое число десятков. В этом случае число десятков умножается на следующее за ним число и к полученному результату приписывается произведение единиц этих чисел. Посмотрим, как элегантен этот приём на примере.

48 x 42. Число десятков 4, последующее число: 5; 4 x 5 = 20. Произведение единиц: 8 x 2 = 16. Значит,

48 x 42 = 2016.
99 x 91. Число десятков: 9, последующее число: 10; 9 x 10 = 90. Произведение единиц: 9 x 1 = 09. Значит, 99 x 91 = 9009.
Ага, то есть, чтобы перемножить 95 x 95, достаточно посчитать 9 x 10 = 90 и 5 x 5 = 25 и ответ готов:
95 x 95 = 9025. Тогда предыдущий пример можно вычислить немного проще: 1952 = (100 + 95)2 = 10000 + 2 x 100 x 95 + 952 = 10000 + 9500 x 2 + 9025 = 10000 + (90+5) x 2 x 100 + 9000 + 25 = = 10000 + 19000 + 1000 + 8000 + 25 = 38025.

Вместо заключения

Казалось бы, зачем уметь считать в уме в 21 веке, когда можно просто подать ую команду смартфону? Но если задуматься, что будет с человечеством, если оно будет взваливать на машины не только физическую работу, но и любую умственную? Не деградирует ли оно? Даже если не рассматривать устный счёт как самоцель, для закалки ума он вполне подходит.

Использованная литература:

«1001 задача для умственного счёта в школе С.А. Рачинского».

  • устный счет
  • математика и реальная жизнь

Источник: https://habr.com/post/207034/

Математика 4 класс Богданович М. В. Повторение материала. Умножение на двузначное число. Задание 73 – 92

Умножение 2 х значных чисел. Умножение двузначных чисел

Категория: –>> Математика 4 класс Богданович  
Задание:  –>>     73 – 92  93 – 106 

наверх

Задание 73

Рассмотри запись письменного умножения на двузначное число и прочитай объяснение.
Объяснение. При письменном умножении на двузначное число сначала умножают на единицы, а потом на десятки. 36 умножить на 7 будет 252 — это первое неполное произведение.

Его записывают так, чтобы цифра единиц находилась под единицами. 36 умножить на 2, будет 72 (десятки) — это второе неполное произведение. Его записывают так, чтобы цифра 2 находилась под десятками.

Потом складывают неполные произведения и получают окончательный результат 972.

Задание 74

Выполни умножение с объяснением.

45 * 2251 * 1832 * 2519 * 18

Задание 75

Посеяли 15 кг озимой пшеницы, а собрали в 23 раза больше. Сколько килограммов пшеницы собрали?

Решение:

  • 1) 15 * 23 = 345 (кг озимой пшеницы собрали)
  • Ответ: озимой пшеницы собрали 345 кг.

Задание 76

1) На 7 грн. 84 к. мама купила 8 ручек по 54 к. и 8 карандашей. Сколько стоит карандаш?

Задание 78

Даны три числа: 30, 20, 5. Найди все возможные произведения суммы двух чисел и третьего числа.

Задание 80

От своего дома мальчик проехал на велосипеде в одном направлении 300 м. Потом он развернулся и в противоположном направлении проехал в 3 раза меньшее расстояние. На каком расстоянии от своего дома оказался мальчик?

Задание 84

Рассмотри рисунок и запиши ответы на вопросы. Какова масса одного ящика масла; трёх ящиков масла; двух ящиков масла?

Задание 87

В 6 мешках 480 кг зерна, в 9 мешках 450 кг картофеля, поровну в каждом. На сколько килограммов масса мешка картофеля меньше массы мешка зерна?

Задание 91

Рассмотри записи и прочитай объяснение, как находили частное чисел 144 и 24.

Объяснение. 14 меньше 24. В частноном будет одна цифра. Частное ищем способом подбора.

Первую пробную цифру можно найти, если поделить число всех десятков делимого на число десятков делителя: 14 : 2 = 7. Проверим устно цифру 7: 20 – 7 = 140, 4 * 7 = 28, 140 + 28 = 168, 168 > 144. Цифра 7 не подходит.

Проверим цифру 6: 20 • 6 = 120, 4 • 6 = 24, 120 + 24 = 144. Следовательно, цифра 6 подобрана правильно.

Задание 92

Найди частное 196 : 28 с объяснением.

Задание:  –>>     73 – 92  93 – 106 

Источник: http://reshebniki-uchebniki.ru/matematika-4-klass/reshebnik-bogdanovich/umnojeniye-na-dvuznachnoye-chislo.php

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.